Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-08T17:34:38.674Z Has data issue: false hasContentIssue false

Distortion in the group of circle homeomorphisms

Published online by Cambridge University Press:  23 March 2022

JULIUSZ BANECKI
Affiliation:
Institute of Mathematics Polish Academy of Sciences, Abrahama 18, 81-967 Sopot, Poland (e-mail: [email protected])
TOMASZ SZAREK*
Affiliation:
Institute of Mathematics Polish Academy of Sciences, Abrahama 18, 81-967 Sopot, Poland (e-mail: [email protected]) Faculty of Physics and Applied Mathematics, Gdańsk University of Technology, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
Rights & Permissions [Opens in a new window]

Abstract

Let G be the group $\text {PAff}_{+}(\mathbb R/\mathbb Z)$ of piecewise affine circle homeomorphisms or the group ${\operatorname {\mathrm {Diff}}}^{{\kern1pt}\infty }(\mathbb R/\mathbb Z)$ of smooth circle diffeomorphisms. A constructive proof that all irrational rotations are distorted in G is given.

Type
Original Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2022. Published by Cambridge University Press

1 Introduction

Let G be a group with some finite generating set $\mathcal G$ . We define the metric $d_{\mathcal G}$ on G by taking $d_{\mathcal G} (g_{1}, g_{2})$ to be the infimum over all $k\ge 0$ such that there exist $f_{1},\ldots , f_{k}\in \mathcal G$ and $\epsilon _{1},\ldots ,\epsilon _{k}\in \{-1, 1\}$ satisfying $g_{2}=f_{1}^{\epsilon _{1}}\cdots f_{k}^{\epsilon _{k}}g_{1}$ .

Now let H be an arbitrary group. An element $f\in H$ is called distorted in H if there exists a finitely generated subgroup $G\subset H$ containing f such that

$$ \begin{align*} \lim_{n\to\infty}\frac{d_{\mathcal G}(f^{n}, \text{id})}{n}=0 \end{align*} $$

for some (and hence every) generating set $\mathcal G$ . Since the limit always exists, it is enough to verify it for some subsequence. The notion of distortion comes from geometric group theory and was introduced by Gromov in [Reference Gromov7].

The problem of the existence of distorted elements in some groups of homeomorphisms has been intensively studied for many years (see [Reference Calegari and Freedman2, Reference Dinamarca and Escayola3Reference Franks and Handel6, Reference Guelmann and Liousse8, Reference Navas10, Reference Polterovich11]). Substantial progress has been achieved for groups of diffeomorphisms of manifolds. In particular, Avila [Reference Avila1] proved that rotations with irrational rotation number are distorted in the group of smooth diffeomorphisms of the circle. In this note we give a constructive proof that all irrational rotations are distorted both in the group of piecewise affine circle homeomorphisms, $\text {PAff}_{+}({\mathbb R/\mathbb Z})$ , and in the group of smooth circle diffeomorphisms, ${\operatorname {\mathrm {Diff}}}^{{\kern1pt}\infty }(\mathbb R/\mathbb Z)$ . The result gives an answer to Question 11 in [Reference Navas9] (see also Question 2.5 in [Reference Franks, Crovisier, Franks, Gambaudo and Le Calvez5]). So far it has not even been known whether there exist distorted elements in $\text {PAff}_{+}(\mathbb R/\mathbb Z)$ . Now from [Reference Guelmann and Liousse8] it follows that each distorted element is conjugate to a rotation.

From now on let G be either $\text {PAff}_{+}(\mathbb R/\mathbb Z)$ or ${\operatorname {\mathrm {Diff}}}^{{\kern1pt}\infty }(\mathbb R/\mathbb Z)$ . We say that $g\in G$ is trivial on some set if there exists a non-empty open set $I\subset [0,1)$ such that $g(x)=x$ for $x\in I$ . The set of all homeomorphisms in G which are trivial on some set will be denoted by $G_{\text {triv}}$ . By $\text {T}$ we denote the set of all rotations, and let $T_{\alpha }$ be the rotation with rotation number $\alpha $ .

This paper is devoted to the proof of the following theorem.

Theorem. All irrational rotations are distorted in G.

2 Proofs

We first formulate two lemmas and deduce the theorem. The proofs of the lemmas will be given at the end of the paper.

Lemma 1. For any irrational rotation $T_{\alpha }$ and $g\in G_{\text {triv}}\cup \text {T}$ there exist a finite generating set $\mathcal G_{g}\subset G$ and a constant $C>0$ such that

$$ \begin{align*} d_{\mathcal G_{g}}(T_{\alpha}^{n} g T_{\alpha}^{-n}, \textrm{id})\le C\log n\quad\text{for all }n\ge 1. \end{align*} $$

Lemma 2. In G there exist $g_{1},\ldots , g_{l}\in G_{\text {triv}}\cup \text {T}$ and $k, k_{1},\ldots , k_{l}\in {\mathbb Z}$ with $k\neq k_{1}+\cdots +k_{l}$ , such that for each sufficiently small $\beta>0$ the element $x=T_{\beta }$ satisfies

(1) $$ \begin{align} x^{k_{1}}g_{1}x^{k_{2}}g_{2}\cdots x^{k_{l}}g_{l}=x^{k}. \end{align} $$

Proof of the theorem

Fix an irrational rotation $T_{\alpha }$ . From Lemma 2 it follows that in G there exists an equation of the form (1) such that $x=T_{\beta }$ , for all sufficiently small $\beta $ , is its solution. Let $\mathcal G=\mathcal G_{g_{1}}\cup \cdots \cup \mathcal G_{g_{l}}$ , where $\mathcal G_{g_{i}}$ , $i=1,\ldots , l$ , are finite generating sets derived from Lemma 1 for $T_{\alpha }$ . We may rewrite equation (1) in the form

(2) $$ \begin{align} x^{k_{1}}g_{1}x^{-k_{1}} x^{k_{2}+k_{1}}g_{2}x^{-k_{2}-k_{1}}\cdots x^{k_{1}+\cdots+k_{l}}g_{l} x^{-k_{1}-\cdots-k_{l}}=x^{k-k_{1}-\cdots-k_{l}}. \end{align} $$

Let $\beta _{0}$ be a positive constant such that $x=T_{\beta }$ for $\beta \in (0, \beta _{0})$ satisfies (2). Set $m:=k-k_{1}-\cdots -k_{l}$ , and let $(n_{i})$ be an increasing sequence of integers such that $n_{i}\alpha \in (0, \beta _{0})\, (\text {mod}\, 1)$ . From Lemma 1 it follows that

$$ \begin{align*} d_{\mathcal G}(T_{\alpha}^{n_{i}(k_{1}+\cdots+k_{j})} g_{j} T_{\alpha}^{-n_{i}(k_{1}+\cdots+k_{j})}, \text{id})\le C_{j}\log n_{i}\quad\text{for all }i\ge 1\text{ and }j=1,\ldots, l. \end{align*} $$

Since $x=T_{n_{i}\alpha }$ satisfies (2), we obtain

$$ \begin{align*} d_{\mathcal G}(T_{\alpha}^{n_{i} m}, \text{id})\le \sum_{j=1}^{l} C_{j}\log n_{i}:= C \log n_{i}\quad\text{for all }i\ge 1\text{.} \end{align*} $$

Hence

$$ \begin{align*} \lim_{n\to\infty}\frac{d_{\mathcal G}(T_{\alpha}^{n}, \text{id})}{n}= \lim_{i\to\infty}\frac{d_{\mathcal G}(T_{\alpha}^{n_{i} m}, \text{id})}{n_{i} m}\le \frac{C}{m}\lim_{i\to\infty} \frac{\log n_{i}}{n_{i}}=0 \end{align*} $$

and the proof is complete.

Proof of Lemma 1

The proof relies on the observation that for a given interval $I\subset (0, 1)$ there exists a finite generating set $\mathcal G\subset G$ such that for any $n\ge 1$ there exists a homeomorphism $h_{n}$ with $d_{\mathcal G}(h_{n}, \text {id})\le C\log n$ for some constant $C>0$ independent of n, and $h_{n}(x)=T_{\alpha }^{n}(x)$ for $x\notin I$ . Without loss of generality we may assume that $I=(a, 1).$ Let $m\ge 1$ be an integer such that $a+2/m<1$ . Let $h\in G $ be any homeomorphism such that $h(x)=x/2$ for $x\in [0, a+2/m)$ , and let $r(x)=x+1/m$ .

We shall define $h_{n}$ by induction. Set $h_{0}=\text {id}$ . If n is odd we put $h_{n}=T_{\alpha } h_{n-1}$ . If n is even, we take $s_{n}:=h_{n/2} h$ and observe that $s_{n}((0, a))=(n\alpha /2, a/2+n\alpha /2)$ . Let $k\in \{1,\ldots , m\}$ be such that $n\alpha /2+k/m\in [0, 1/m)$ (mod $1$ ). Then $r^{k} s_{n}((0, a))\subset (0, a/2+1/m)$ . Therefore

(3) $$ \begin{align} h^{-1} r^{k} h_{n/2} h(x)=2(x/2+n\alpha/2+k/m)=x+n\alpha+2k/m=T_{\alpha}^{n}(x)+2k/m \end{align} $$

for $x\in (0, a)$ . Put $h_{n}:=r^{-2k}h^{-1} r^{k} h_{n/2} h$ , and let $\mathcal G:=\{T_{\alpha }, h, r\}$ . Note that

$$ \begin{align*} d_{\mathcal G}(h_{n}, \text{id})\le 3m+3+d_{\mathcal G}(h_{\lfloor n/2\rfloor}, \text{id}). \end{align*} $$

Thus we obtain $d_{\mathcal G}(h_{n}, \text {id})\le C\log n$ . Finally, observe that for any $g\in G_{\text {triv}}$ such that $g(x)=\text {id}$ on I we have

(4) $$ \begin{align} T_{\alpha}^{n} g T_{\alpha}^{-n}=h_{n} g h_{n}^{-1}. \end{align} $$

Indeed, from (3) and the definition of $h_{n}$ and r it follows that $h_{n}(x)=T_{\alpha }^{n}(x)$ for $x\in (0, a)$ , and

(5) $$ \begin{align} h_{n}((0, a))=T_{\alpha}^{n}((0, a))=(n\alpha, a+n\alpha). \end{align} $$

Therefore, we have

$$ \begin{align*} h_{n}^{-1}(x)=T_{\alpha}^{-n}(x)\in (0, a)\quad\text{for }x\in (n\alpha, a+n\alpha). \end{align*} $$

Since $g(x)=x$ for $x\in (a, 1)$ and g is a homeomorphism, we have $g((0, a))=(0, a)$ .

To justify equality (4), first fix $x\in (n\alpha , a+n\alpha )$ . Then we have

$$ \begin{align*} h_{n}^{-1}(x)=T_{\alpha}^{-n}(x)\in (0, a) \end{align*} $$

and

$$ \begin{align*} (gh_{n}^{-1})(x)=(gT_{\alpha}^{-n})(x)\in (0, a). \end{align*} $$

Consequently, we obtain

$$ \begin{align*} h_{n}gh_{n}^{-1}(x)=T_{\alpha}^{n}gT_{\alpha}^{-n}(x)\quad\text{for }x\in (n\alpha, a+n\alpha), \end{align*} $$

by the fact that $h_{n}(x)=T_{\alpha }^{n}(x)$ for $x\in (0, a)$ . On the other hand, if $x\notin (n\alpha , a+n\alpha )$ , from (5) and the fact that $T_{\alpha }^{n}$ and $h_{n}$ are homeomorphisms, we obtain

$$ \begin{align*} T_{\alpha}^{-n}(x)\in (a, 1]\quad\text{and}\quad h_{n}^{-1}(x)\in(a, 1]. \end{align*} $$

Since $g(x)=x$ for $x\in (a, 1]$ , we have

$$ \begin{align*} (T_{\alpha}^{n}gT_{\alpha}^{-n})(x)=(T_{\alpha}^{n}T_{\alpha}^{-n})(x)=x \end{align*} $$

and

$$ \begin{align*} (h_{n} g h_{n}^{-1})(x)=(h_{n} h_{n}^{-1})(x)=x. \end{align*} $$

Thus equality (4) holds true.

Finally, we obtain

$$ \begin{align*} d_{\mathcal G}(T_{\alpha}^{n} g T_{\alpha}^{-n}, \text{id})\le C\log n. \end{align*} $$

In the case where g is a rotation the conclusion of the lemma is obvious.

Proof of Lemma 2

Let $\beta \in (0, 10^{-3})$ , and let $f_{1}\in G_{\text {triv}}$ be arbitrary such that

$$ \begin{align*} f_{1}(x)=0.4+2(x-0.4) \text{ for }x\in [0.4, 0.6]\quad\text{and}\quad f_{1}(x)=x \text{ for }x\in [0.9, 1.1]. \end{align*} $$

Set

$$ \begin{align*} H_{1}=T_{2\beta}^{-1} f_{1} T_{2\beta} f_{1}^{-1}. \end{align*} $$

It is obvious that

$$ \begin{align*} H_{1}(x)=x+2\beta \text{ for }x\in [0.41, 0.79]\quad\text{and}\quad H_{1}(x)=x \text{ for }x\in [0.91, 1.09]. \end{align*} $$

Define

$$ \begin{align*} H_{2}=T_{1/2} H_{1}^{-1} T_{1/2} H_{1}, \end{align*} $$

and observe that

$$ \begin{align*} H_{2}(x)=x-2\beta\quad\text{for }x\in [0.95, 1]. \end{align*} $$

Simple computation gives

$$ \begin{align*} T_{1/2} H_{2}T_{1/2} H_{2}=\text{id}. \end{align*} $$

Set

$$ \begin{align*} H_{3} =T_{2\beta} H_{2}. \end{align*} $$

Then we have

$$ \begin{align*} H_{3}(x)=x\quad\text{for }x\in [0.95, 1] \end{align*} $$

and

(6) $$ \begin{align} T_{2\beta+1/2}H_{3} T_{-2\beta-1/2} H_{3}=T_{4\beta}. \end{align} $$

Take an arbitrary $f_{2}\in G_{\text {triv}}$ satisfying

$$ \begin{align*} f_{2}(x)=2x\quad\text{for }x\in [0, 0.49], \end{align*} $$

and define

$$ \begin{align*} H_{4}=f_{2}^{-1} H_{3}f_{2}. \end{align*} $$

It is easy to see that

$$ \begin{align*} H_{4}(x)= \begin{cases} H_{3}(2x)/2 & \text{for } x\in [0, 1/2),\\ x & \text{for } x\in [1/2, 1). \end{cases} \end{align*} $$

Let

(7) $$ \begin{align} H_{5}=T_{1/2} H_{4} T_{1/2}H_{4}. \end{align} $$

Observe that the graph of $H_{5}$ is built from two scaled copies of $H_{3}$ , that is,

$$ \begin{align*} H_{5}(x)= \begin{cases} H_{3}(2x)/2 & \text{for } x\in [0, 1/2),\\ H_{3}(2x-1)/2+1/2 & \text{for } x\in [1/2, 1). \end{cases} \end{align*} $$

Therefore, by (6) and (7), we finally obtain

(8) $$ \begin{align} T_{\beta+1/4}H_{5} T_{-\beta-1/4}H_{5}=T_{2\beta}. \end{align} $$

Indeed, this is easy to see if we realize that (8) is simply equation (6) rewritten in the new coordinates $(x/2, y/2)$ . Subsequently plugging $H_{5}, H_{4}, H_{3}, H_{2}$ and $H_{1}$ into formula (8), we have

$$ \begin{align*} \begin{aligned} &T_{\beta} T_{1/4}T_{1/2} f_{2}^{-1} T_{\beta}^{2} T_{1/2} f_{1}T_{\beta}^{-2} f_{1}^{-1} T_{\beta}^{2} T_{1/2} T_{\beta}^{-2} f_{1} T_{\beta}^{2} f_{1}^{-1}f_{2} T_{1/2}f_{2}^{-1} T_{\beta}^{2} T_{1/2} f_{1}T_{\beta}^{-2}\\[3pt] &\cdot f_{1}^{-1} T_{\beta}^{2} T_{1/2} T_{\beta}^{-2} f_{1} T_{\beta}^{2} f_{1}^{-1}f_{2} T_{\beta}^{-1} T_{-1/4}T_{1/2} f_{2}^{-1} T_{\beta}^{2} T_{1/2} f_{1}T_{\beta}^{-2} f_{1}^{-1} T_{\beta}^{2} T_{1/2} T_{\beta}^{-2} f_{1} T_{\beta}^{2} \\[3pt] &\cdot f_{1}^{-1}f_{2} T_{1/2}f_{2}^{-1} T_{\beta}^{2} T_{1/2} f_{1}T_{\beta}^{-2} f_{1}^{-1} T_{\beta}^{2} T_{1/2} T_{\beta}^{-2} f_{1} T_{\beta}^{2} f_{1}^{-1}f_{2}=T_{\beta}^{2}. \end{aligned} \end{align*} $$

Since $\beta \in (0, 10^{-3})$ was arbitrary, we obtain that each $T_{\beta }$ sufficiently small satisfies equation (1) with the functions $g_{1},\ldots , g_{l}\in \{f_{1}, f_{2}, f_{1}^{-1}, f_{2}^{-1}, T_{1/2}, T_{-1/2}, T_{1/4}, T_{-1/4}\}\subset G_{\text {triv}}\cup \text {T}$ and $k_{1},\ldots , k_{l}\in {\mathbb Z}$ . Obviously, some of the $k_{i}$ are equal to $0$ ( $k_{2}$ , for instance) but $k_{1}+\cdots +k_{l}=8$ . Since $k=2$ , the proof of the lemma is complete.

References

Avila, A.. Distortion elements in ${Diff}^{\infty}\left(\mathbb{R}/ \mathbb{Z}\right)$ . Preprint, 2008, arXiv:0808.2334.Google Scholar
Calegari, D. and Freedman, M.. Distortion in transformation groups. Geom. Topol. 10 (2006), 267293, with an appendix by Y. de Cornulier.CrossRefGoogle Scholar
Dinamarca, L. and Escayola, M.. Some examples of distorted interval diffeomorphisms of intermediate regularity. Ergod. Th. & Dynam. Sys., to appear.Google Scholar
Eynard-Bontemps, H. and Navas, A.. Mather invariant, distortion, and conjugates for diffeomorphisms of the interval . J. Funct. Anal. 281(9) (2021), 109149.10.1016/j.jfa.2021.109149CrossRefGoogle Scholar
Franks, J.. Distortion in groups of circle and surface diffeomorphisms. Dynamique des Difféomorphismes Conservatifs des Surfaces: Un Point de vue Topologique (Panoramas et Synthèses, 21). Eds. Crovisier, S., Franks, J., Gambaudo, J.-M. and Le Calvez, P.. Société Mathématique de France, Paris, 2006, pp. 3552.Google Scholar
Franks, J. and Handel, M.. Distortion elements in group actions on surface. Duke Math. J. 131(3) (2006), 441468.10.1215/S0012-7094-06-13132-0CrossRefGoogle Scholar
Gromov, M.. Asymptotic invariants of infinite groups. Geometric Group Theory (Sussex, 1991) (London Mathematical Society Lecture Notes Series, 182). Vol. 2. Cambridge University Press, Cambridge, 1993, pp. 1295.Google Scholar
Guelmann, N. and Liousse, I.. Distortion in group of interval exchange transformations. Groups Geom. Dyn. 13 (2019), 795819.10.4171/GGD/505CrossRefGoogle Scholar
Navas, A.. Group actions on 1-manifolds: a list of very concrete open questions. Proc. Int. Congress of Mathematicians (Rio de Janeiro 2018). Vol. III. Invited Lectures. World Scientific, Hackensack, NJ, 2018, pp. 20352062.CrossRefGoogle Scholar
Navas, A.. (Un)distorted diffeomorphisms in different regularities. Israel J. Math. 244(2) (2021), 727741.CrossRefGoogle Scholar
Polterovich, L.. Growth of maps, distortion in groups and symplectic geometry. Invent. Math. 150 (2002), 655686.10.1007/s00222-002-0251-xCrossRefGoogle Scholar