1 Introduction
Let G be a group with some finite generating set $\mathcal G$ . We define the metric $d_{\mathcal G}$ on G by taking $d_{\mathcal G} (g_{1}, g_{2})$ to be the infimum over all $k\ge 0$ such that there exist $f_{1},\ldots , f_{k}\in \mathcal G$ and $\epsilon _{1},\ldots ,\epsilon _{k}\in \{-1, 1\}$ satisfying $g_{2}=f_{1}^{\epsilon _{1}}\cdots f_{k}^{\epsilon _{k}}g_{1}$ .
Now let H be an arbitrary group. An element $f\in H$ is called distorted in H if there exists a finitely generated subgroup $G\subset H$ containing f such that
for some (and hence every) generating set $\mathcal G$ . Since the limit always exists, it is enough to verify it for some subsequence. The notion of distortion comes from geometric group theory and was introduced by Gromov in [Reference Gromov7].
The problem of the existence of distorted elements in some groups of homeomorphisms has been intensively studied for many years (see [Reference Calegari and Freedman2, Reference Dinamarca and Escayola3–Reference Franks and Handel6, Reference Guelmann and Liousse8, Reference Navas10, Reference Polterovich11]). Substantial progress has been achieved for groups of diffeomorphisms of manifolds. In particular, Avila [Reference Avila1] proved that rotations with irrational rotation number are distorted in the group of smooth diffeomorphisms of the circle. In this note we give a constructive proof that all irrational rotations are distorted both in the group of piecewise affine circle homeomorphisms, $\text {PAff}_{+}({\mathbb R/\mathbb Z})$ , and in the group of smooth circle diffeomorphisms, ${\operatorname {\mathrm {Diff}}}^{{\kern1pt}\infty }(\mathbb R/\mathbb Z)$ . The result gives an answer to Question 11 in [Reference Navas9] (see also Question 2.5 in [Reference Franks, Crovisier, Franks, Gambaudo and Le Calvez5]). So far it has not even been known whether there exist distorted elements in $\text {PAff}_{+}(\mathbb R/\mathbb Z)$ . Now from [Reference Guelmann and Liousse8] it follows that each distorted element is conjugate to a rotation.
From now on let G be either $\text {PAff}_{+}(\mathbb R/\mathbb Z)$ or ${\operatorname {\mathrm {Diff}}}^{{\kern1pt}\infty }(\mathbb R/\mathbb Z)$ . We say that $g\in G$ is trivial on some set if there exists a non-empty open set $I\subset [0,1)$ such that $g(x)=x$ for $x\in I$ . The set of all homeomorphisms in G which are trivial on some set will be denoted by $G_{\text {triv}}$ . By $\text {T}$ we denote the set of all rotations, and let $T_{\alpha }$ be the rotation with rotation number $\alpha $ .
This paper is devoted to the proof of the following theorem.
Theorem. All irrational rotations are distorted in G.
2 Proofs
We first formulate two lemmas and deduce the theorem. The proofs of the lemmas will be given at the end of the paper.
Lemma 1. For any irrational rotation $T_{\alpha }$ and $g\in G_{\text {triv}}\cup \text {T}$ there exist a finite generating set $\mathcal G_{g}\subset G$ and a constant $C>0$ such that
Lemma 2. In G there exist $g_{1},\ldots , g_{l}\in G_{\text {triv}}\cup \text {T}$ and $k, k_{1},\ldots , k_{l}\in {\mathbb Z}$ with $k\neq k_{1}+\cdots +k_{l}$ , such that for each sufficiently small $\beta>0$ the element $x=T_{\beta }$ satisfies
Proof of the theorem
Fix an irrational rotation $T_{\alpha }$ . From Lemma 2 it follows that in G there exists an equation of the form (1) such that $x=T_{\beta }$ , for all sufficiently small $\beta $ , is its solution. Let $\mathcal G=\mathcal G_{g_{1}}\cup \cdots \cup \mathcal G_{g_{l}}$ , where $\mathcal G_{g_{i}}$ , $i=1,\ldots , l$ , are finite generating sets derived from Lemma 1 for $T_{\alpha }$ . We may rewrite equation (1) in the form
Let $\beta _{0}$ be a positive constant such that $x=T_{\beta }$ for $\beta \in (0, \beta _{0})$ satisfies (2). Set $m:=k-k_{1}-\cdots -k_{l}$ , and let $(n_{i})$ be an increasing sequence of integers such that $n_{i}\alpha \in (0, \beta _{0})\, (\text {mod}\, 1)$ . From Lemma 1 it follows that
Since $x=T_{n_{i}\alpha }$ satisfies (2), we obtain
Hence
and the proof is complete.
Proof of Lemma 1
The proof relies on the observation that for a given interval $I\subset (0, 1)$ there exists a finite generating set $\mathcal G\subset G$ such that for any $n\ge 1$ there exists a homeomorphism $h_{n}$ with $d_{\mathcal G}(h_{n}, \text {id})\le C\log n$ for some constant $C>0$ independent of n, and $h_{n}(x)=T_{\alpha }^{n}(x)$ for $x\notin I$ . Without loss of generality we may assume that $I=(a, 1).$ Let $m\ge 1$ be an integer such that $a+2/m<1$ . Let $h\in G $ be any homeomorphism such that $h(x)=x/2$ for $x\in [0, a+2/m)$ , and let $r(x)=x+1/m$ .
We shall define $h_{n}$ by induction. Set $h_{0}=\text {id}$ . If n is odd we put $h_{n}=T_{\alpha } h_{n-1}$ . If n is even, we take $s_{n}:=h_{n/2} h$ and observe that $s_{n}((0, a))=(n\alpha /2, a/2+n\alpha /2)$ . Let $k\in \{1,\ldots , m\}$ be such that $n\alpha /2+k/m\in [0, 1/m)$ (mod $1$ ). Then $r^{k} s_{n}((0, a))\subset (0, a/2+1/m)$ . Therefore
for $x\in (0, a)$ . Put $h_{n}:=r^{-2k}h^{-1} r^{k} h_{n/2} h$ , and let $\mathcal G:=\{T_{\alpha }, h, r\}$ . Note that
Thus we obtain $d_{\mathcal G}(h_{n}, \text {id})\le C\log n$ . Finally, observe that for any $g\in G_{\text {triv}}$ such that $g(x)=\text {id}$ on I we have
Indeed, from (3) and the definition of $h_{n}$ and r it follows that $h_{n}(x)=T_{\alpha }^{n}(x)$ for $x\in (0, a)$ , and
Therefore, we have
Since $g(x)=x$ for $x\in (a, 1)$ and g is a homeomorphism, we have $g((0, a))=(0, a)$ .
To justify equality (4), first fix $x\in (n\alpha , a+n\alpha )$ . Then we have
and
Consequently, we obtain
by the fact that $h_{n}(x)=T_{\alpha }^{n}(x)$ for $x\in (0, a)$ . On the other hand, if $x\notin (n\alpha , a+n\alpha )$ , from (5) and the fact that $T_{\alpha }^{n}$ and $h_{n}$ are homeomorphisms, we obtain
Since $g(x)=x$ for $x\in (a, 1]$ , we have
and
Thus equality (4) holds true.
Finally, we obtain
In the case where g is a rotation the conclusion of the lemma is obvious.
Proof of Lemma 2
Let $\beta \in (0, 10^{-3})$ , and let $f_{1}\in G_{\text {triv}}$ be arbitrary such that
Set
It is obvious that
Define
and observe that
Simple computation gives
Set
Then we have
and
Take an arbitrary $f_{2}\in G_{\text {triv}}$ satisfying
and define
It is easy to see that
Let
Observe that the graph of $H_{5}$ is built from two scaled copies of $H_{3}$ , that is,
Therefore, by (6) and (7), we finally obtain
Indeed, this is easy to see if we realize that (8) is simply equation (6) rewritten in the new coordinates $(x/2, y/2)$ . Subsequently plugging $H_{5}, H_{4}, H_{3}, H_{2}$ and $H_{1}$ into formula (8), we have
Since $\beta \in (0, 10^{-3})$ was arbitrary, we obtain that each $T_{\beta }$ sufficiently small satisfies equation (1) with the functions $g_{1},\ldots , g_{l}\in \{f_{1}, f_{2}, f_{1}^{-1}, f_{2}^{-1}, T_{1/2}, T_{-1/2}, T_{1/4}, T_{-1/4}\}\subset G_{\text {triv}}\cup \text {T}$ and $k_{1},\ldots , k_{l}\in {\mathbb Z}$ . Obviously, some of the $k_{i}$ are equal to $0$ ( $k_{2}$ , for instance) but $k_{1}+\cdots +k_{l}=8$ . Since $k=2$ , the proof of the lemma is complete.