Hostname: page-component-6587cd75c8-6qszs Total loading time: 0 Render date: 2025-04-24T03:04:48.690Z Has data issue: false hasContentIssue false

Instability evolution on a shock-accelerated cylindrical fluid layer with arbitrary Atwood numbers

Published online by Cambridge University Press:  25 November 2024

Ming Yuan
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Zhiye Zhao*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, PR China
Luoqin Liu*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Pei Wang
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing 100094, PR China
Nan-Sheng Liu
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Xi-Yun Lu
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

Developing a model to describe the shock-accelerated cylindrical fluid layer with arbitrary Atwood numbers is essential for uncovering the effect of Atwood numbers on the perturbation growth. The recent model (J. Fluid Mech., vol. 969, 2023, p. A6) reveals several contributions to the instability evolution of a shock-accelerated cylindrical fluid layer but its applicability is limited to cases with an absolute value of Atwood numbers close to $1$, due to the employment of the thin-shell correction and interface coupling effect of the fluid layer in vacuum. By employing the linear stability analysis on a cylindrical fluid layer in which two interfaces separate three arbitrary-density fluids, the present work generalizes the thin-shell correction and interface coupling effect, and thus, extends the recent model to cases with arbitrary Atwood numbers. The accuracy of this extended model in describing the instability evolution of the shock-accelerated fluid layer before reshock is confirmed via direct numerical simulations. In the verification simulations, three fluid-layer configurations are considered, where the outer and intermediate fluids remain fixed and the density of the inner fluid is reduced. Moreover, the mechanisms underlying the effect of the Atwood number at the inner interface on the perturbation growth are mainly elucidated by employing the model to analyse each contribution. As the Atwood number decreases, the dominant contribution of the Richtmyer–Meshkov instability is enhanced due to the stronger waves reverberated inside the layer, leading to weakened perturbation growth at initial in-phase interfaces and enhanced perturbation growth at initial anti-phase interfaces.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abarzhi, S.I., Bhowmick, A.K., Naveh, A., Pandian, A., Swisher, N.C., Stellingwerf, R.F. & Arnett, W.D. 2019 Supernova, nuclear synthesis, fluid instabilities, and interfacial mixing. Proc. Natl Acad. Sci. USA 116 (37), 1818418192.CrossRefGoogle ScholarPubMed
Abu-Shawareb, H., et al. 2022 Lawson criterion for ignition exceeded in an inertial fusion experiment. Phys. Rev. Lett. 129 (7), 075001.CrossRefGoogle Scholar
Amendt, P., Colvin, J.D., Tipton, R.E., Hinkel, D.E., Edwards, M.J., Landen, O.L., Ramshaw, J.D., Suter, L.J., Varnum, W.S. & Watt, R.G. 2002 Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: design and analysis. Phys. Plasmas 9 (5), 22212233.CrossRefGoogle Scholar
Arnett, W.D., Bahcall, J.N., Kirshner, R.P. & Woosley, S.E. 1989 Supernova 1987A. Annu. Rev. Astron. Astrophys. 27 (1), 629700.CrossRefGoogle Scholar
Bell, G.I. 1951 Taylor instability on cylinders and spheres in the small amplitude approximation. Tech. Rep. No. LA-1321. Los Alamos Scientific Laboratory.Google Scholar
Betti, R. & Hurricane, O.A. 2016 Inertial-confinement fusion with lasers. Nat. Phys. 12 (5), 435448.CrossRefGoogle Scholar
Brouillette, M. 2002 The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34 (1), 445468.CrossRefGoogle Scholar
Chen, C., Wang, H., Zhai, Z. & Luo, X. 2023 a Attenuation of perturbation growth of single-mode SF$_{6}$–air interface through reflected rarefaction waves. J. Fluid Mech. 969, R1.CrossRefGoogle Scholar
Chen, C., Xing, Y., Wang, H., Zhai, Z. & Luo, X. 2023 b Freeze-out of perturbation growth of single-mode helium–air interface through reflected shock in Richtmyer–Meshkov flows. J. Fluid Mech. 956, R2.CrossRefGoogle Scholar
Chisnell, R.F. 1998 An analytic description of converging shock waves. J. Fluid Mech. 354, 357375.CrossRefGoogle Scholar
Ding, J., Li, J., Sun, R., Zhai, Z. & Luo, X. 2019 Convergent Richtmyer–Meshkov instability of a heavy gas layer with perturbed outer interface. J. Fluid Mech. 878, 277291.CrossRefGoogle Scholar
Ding, J., Si, T., Yang, J., Lu, X.-Y., Zhai, Z. & Luo, X. 2017 Measurement of a Richtmyer–Meshkov instability at an air–SF$_{6}$ interface in a semiannular shock tube. Phys. Rev. Lett. 119 (1), 014501.CrossRefGoogle Scholar
Epstein, R. 2004 On the Bell–Plesset effects: the effects of uniform compression and geometrical convergence on the classical Rayleigh–Taylor instability. Phys. Plasmas 11 (11), 51145124.CrossRefGoogle Scholar
Fu, C.-Q., Zhao, Z., Xu, X., Wang, P., Liu, N.-S., Wan, Z.-H. & Lu, X.-Y. 2022 Nonlinear saturation of bubble evolution in a two-dimensional single-mode stratified compressible Rayleigh–Taylor instability. Phys. Rev. Fluid 7 (2), 023902.CrossRefGoogle Scholar
Ge, J., Li, H., Zhang, X. & Tian, B. 2022 Evaluating the stretching/compression effect of Richtmyer–Meshkov instability in convergent geometries. J. Fluid Mech. 946, A18.CrossRefGoogle Scholar
Henry de Frahan, M.T., Movahed, P. & Johnsen, E. 2015 Numerical simulations of a shock interacting with successive interfaces using the discontinuous Galerkin method: the multilayered Richtmyer–Meshkov and Rayleigh–Taylor instabilities. Shock Waves 25, 329345.CrossRefGoogle Scholar
Hester, J.J. 2008 The Crab Nebula: an astrophysical chimera. Annu. Rev. Astron. Astrophys. 46 (1), 127155.CrossRefGoogle Scholar
Jacobs, J.W., Jenkins, D.G., Klein, D.L. & Benjamin, R.F. 1995 Nonlinear growth of the shock-accelerated instability of a thin fluid layer. J. Fluid Mech. 295, 2342.CrossRefGoogle Scholar
Jacobs, J.W., Klein, D.L., Jenkins, D.G. & Benjamin, R.F. 1993 Instability growth patterns of a shock-accelerated thin fluid layer. Phys. Rev. Lett. 70 (5), 583586.CrossRefGoogle ScholarPubMed
Kane, J., Drake, R.P. & Remington, B.A. 1999 An evaluation of the Richtmyer–Meshkov instability in supernova remnant formation. Astrophys. J. 511 (1), 335340.CrossRefGoogle Scholar
Kishony, R. & Shvarts, D. 2001 Ignition condition and gain prediction for perturbed inertial confinement fusion targets. Phys. Plasmas 8 (11), 49254936.CrossRefGoogle Scholar
Li, J., Ding, J., Luo, X. & Zou, L. 2022 Instability of a heavy gas layer induced by a cylindrical convergent shock. Phys. Fluids 34 (4), 042123.CrossRefGoogle Scholar
Liang, Y., Liu, L., Zhai, Z., Si, T. & Wen, C.-Y. 2020 Evolution of shock-accelerated heavy gas layer. J. Fluid Mech. 886, A7.CrossRefGoogle Scholar
Liang, Y. & Luo, X. 2021 On shock-induced heavy-fluid-layer evolution. J. Fluid Mech. 920, A13.CrossRefGoogle Scholar
Liang, Y. & Luo, X. 2022 a On shock-induced evolution of a gas layer with two fast/slow interfaces. J. Fluid Mech. 939, A16.CrossRefGoogle Scholar
Liang, Y. & Luo, X. 2022 b On shock-induced light-fluid-layer evolution. J. Fluid Mech. 933, A10.CrossRefGoogle Scholar
Liang, Y. & Luo, X. 2023 Hydrodynamic instabilities of two successive slow/fast interfaces induced by a weak shock. J. Fluid Mech. 955, A40.CrossRefGoogle Scholar
Lombardini, M., Pullin, D.I. & Meiron, D.I. 2014 Turbulent mixing driven by spherical implosions. Part 1. Flow description and mixing-layer growth. J. Fluid Mech. 748, 85112.CrossRefGoogle Scholar
Luo, X., Li, M., Ding, J., Zhai, Z. & Si, T. 2019 Nonlinear behaviour of convergent Richtmyer–Meshkov instability. J. Fluid Mech. 877, 130141.CrossRefGoogle Scholar
Meshkov, E.E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4 (5), 101104.CrossRefGoogle Scholar
Mikaelian, K.O. 1985 Richtmyer–Meshkov instabilities in stratified fluids. Phys. Rev. A 31 (1), 410419.CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 1990 Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified spherical shells. Phys. Rev. A 42 (6), 34003420.CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 1995 Rayleigh–Taylor and Richtmyer–Meshkov instabilities in finite-thickness fluid layers. Phys. Fluids 7 (4), 888890.CrossRefGoogle Scholar
Mikaelian, K.O. 1996 Numerical simulations of Richtmyer–Meshkov instabilities in finite-thickness fluid layers. Phys. Fluids 8 (5), 12691292.CrossRefGoogle Scholar
Mikaelian, K.O. 2005 Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified cylindrical shells. Phys. Fluids 17 (9), 094105.CrossRefGoogle Scholar
Plesset, M.S. 1954 On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25 (1), 9698.CrossRefGoogle Scholar
Rayleigh, Lord 1883 Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. s1–14 (1), 170177.Google Scholar
Richtmyer, R.D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths 13 (2), 297319.CrossRefGoogle Scholar
Sun, R., Ding, J., Zhai, Z., Si, T. & Luo, X. 2020 Convergent Richtmyer–Meshkov instability of heavy gas layer with perturbed inner surface. J. Fluid Mech. 902, A3.CrossRefGoogle Scholar
Taylor, G.I. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A 201 (1065), 192196.Google Scholar
Wadas, M.J., Khieu, L.H., Cearley, G.S., LeFevre, H.J., Kuranz, C.C. & Johnsen, E. 2023 Saturation of vortex rings ejected from shock-accelerated interfaces. Phys. Rev. Lett. 130 (19), 194001.CrossRefGoogle ScholarPubMed
Walchli, B. & Thornber, B. 2017 Reynolds number effects on the single-mode Richtmyer–Meshkov instability. Phys. Rev. E 95 (1), 013104.CrossRefGoogle ScholarPubMed
Wu, J., Liu, H. & Xiao, Z. 2021 Refined modelling of the single-mode cylindrical Richtmyer–Meshkov instability. J. Fluid Mech. 908, A9.CrossRefGoogle Scholar
Yan, Z., Fu, Y., Wang, L., Yu, C. & Li, X. 2022 Effect of chemical reaction on mixing transition and turbulent statistics of cylindrical Richtmyer–Meshkov instability. J. Fluid Mech. 941, A55.CrossRefGoogle Scholar
Yuan, M., Zhao, Z., Liu, L., Wang, P., Liu, N.-S. & Lu, X.-Y. 2023 Instability evolution of a shock-accelerated thin heavy fluid layer in cylindrical geometry. J. Fluid Mech. 969, A6.CrossRefGoogle Scholar
Zhang, D., Ding, J., Si, T. & Luo, X. 2023 Divergent Richtmyer–Meshkov instability on a heavy gas layer. J. Fluid Mech. 959, A37.CrossRefGoogle Scholar
Zhang, S., Liu, H., Kang, W., Xiao, Z., Tao, J., Zhang, P., Zhang, W. & He, X.-T. 2020 Coupling effects and thin-shell corrections for surface instabilities of cylindrical fluid shells. Phys. Rev. E 101 (2), 023108.CrossRefGoogle ScholarPubMed
Zhao, Z., Wang, P., Liu, N.-S. & Lu, X.-Y. 2020 Analytical model of nonlinear evolution of single-mode Rayleigh–Taylor instability in cylindrical geometry. J. Fluid Mech. 900, A24.CrossRefGoogle Scholar
Zhou, Y., Clark, T.T., Clark, D.S., Gail Glendinning, S., Aaron Skinner, M., Huntington, C.M., Hurricane, O.A., Dimits, A.M. & Remington, B.A. 2019 Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities. Phys. Plasmas 26 (8), 080901.CrossRefGoogle Scholar
Zhou, Y., et al. 2021 Rayleigh–Taylor and Richtmyer–Meshkov instabilities: a journey through scales. Physica D 423, 132838.CrossRefGoogle Scholar
Zou, L., Al-Marouf, M., Cheng, W., Samtaney, R., Ding, J. & Luo, X. 2019 Richtmyer–Meshkov instability of an unperturbed interface subjected to a diffracted convergent shock. J. Fluid Mech. 879, 448467.CrossRefGoogle Scholar