Hostname: page-component-669899f699-8p65j Total loading time: 0 Render date: 2025-04-25T05:02:04.842Z Has data issue: false hasContentIssue false

Total secondary emission effect on the complex plasma sheath with superextensive electrons

Published online by Cambridge University Press:  24 October 2024

Z. Eljabiri
Affiliation:
Experimentation and Modelling in Mechanics and Energy Systems Team, Département de Génie Civil, Energétique Et Environnement, National School of Applied Sciences, University Abdelmalek Assaadi, BP 03, Ajdir Al-Hoceima, Morocco
O. El Ghani
Affiliation:
Experimentation and Modelling in Mechanics and Energy Systems Team, Département de Génie Civil, Energétique Et Environnement, National School of Applied Sciences, University Abdelmalek Assaadi, BP 03, Ajdir Al-Hoceima, Morocco
I. Driouch*
Affiliation:
Experimentation and Modelling in Mechanics and Energy Systems Team, Département de Génie Civil, Energétique Et Environnement, National School of Applied Sciences, University Abdelmalek Assaadi, BP 03, Ajdir Al-Hoceima, Morocco
H. Chatei
Affiliation:
Laboratory of Physics of Matter and Radiations, Department of Physics, Faculty of Science, University Mohammed I, B.P. 717, 60000 Oujda, Morocco
*
Email address for correspondence: [email protected]

Abstract

This study investigates the dynamics of various particles within the plasma sheath, focusing on the influence of secondary emissions from charged dust particles. The research concentrates on backscattered electron emission (BEE), inelastic reflection emission (IRE) and true-secondary electron emission (TEE) as key contributors to the behaviour of dust particles within the plasma sheath. Employing the semi-empirical model of Furman and Pivi (F-P model), the study defines the total emission of secondary electrons (EES), comprising these three types. The analysis aims to enhance our understanding of the complex interplay between secondary emission phenomena and the dynamics of charged particles within the plasma sheath, contributing valuable insights to the field. Furthermore, a comparative study has been conducted between the results obtained from the emission of secondary electrons according to the Sternglass theory and the emission of secondary electrons obtained using the F-P model. It is observed that the secondary electron emission (SEE) from the dust, based on the F-P model, demonstrates more pronounced effects on the sheath characteristics, particularly when considering lower values of the superextensive electron parameter ‘$q$’.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abe, H., Yoneda, M. & Fujiwara, N. 2008 Developments of plasma etching technology for fabricating semiconductor devices. Japan. J. Appl. Phys. 47 (3R), 1435.CrossRefGoogle Scholar
Arnas, C., Mikikian, M., Bachet, G. & Doveil, F. 2000 Sheath modification in the presence of dust particles. Phys. Plasmas 7 (11), 44184422.CrossRefGoogle Scholar
Barkan, A., Merlino, R.L. & Dangelo, N. 1995 Laboratory observation of the dust-acoustic wave mode. Phys. Plasmas 2 (10), 35633565.CrossRefGoogle Scholar
Basnet, S., Ram Pokhrel, R. & Khanal, R. 2021 Characteristics of magnetized dusty plasma sheath with two ion species and q-nonextensive electrons. IEEE Trans. Plasma Sci. 49 (4), 12681277.CrossRefGoogle Scholar
Benlemdjaldi, D., Tahraoui, A., Hugon, R. & Bougdira, J. 2013 The effect of a dust size distribution on electrostatic sheaths in unmagnetized dusty plasmas. Phys. Plasmas 20 (4), 043508.CrossRefGoogle Scholar
Borgohain, D.R. & Saharia, K. 2018 Behavior of collisional sheath in electronegative plasma with q-nonextensive electron distribution. Phys. Plasmas 25 (4), 5000.CrossRefGoogle Scholar
Bronstein, I.M. & Fraiman, B.C. 1969 Secondary Electron Emission. Nauka.Google Scholar
Conrad, J.R., Radtke, J.L., Dodd, R.A., Worzala, F.J. & Tran, N.C. 1987 Plasma source ion-implantation technique for surface modification of materials. J. Appl. Phys. 62 (11), 45914596.CrossRefGoogle Scholar
Driouch, I. & Chatei, H. 2013 Fluid simulation of the ion temperature effects on a collisional magnetized sheath of a dusty plasma. J. Appl. Fluid Mech. 6 (4), 511517.Google Scholar
Driouch, I. & Chatei, H. 2017 Effect of q-nonextensive distribution of electrons on the sheath in dusty plasma. Eur. Phys. J. D 71 (9), 17.CrossRefGoogle Scholar
Driouch, I., Chatei, H. & Bojaddaini, M.E. 2015 Numerical study of the sheath in magnetized dusty plasma with two-temperature electrons. J. Plasma Phys. 81 (1), 905810104.CrossRefGoogle Scholar
El Ghani, O., Driouch, I. & Chatei, H. 2019 Effects of non-extensive electrons on the sheath of dusty plasmas with variable dust charge. Contrib. Plasma Phys. 59 (9), e201900030.CrossRefGoogle Scholar
El Ghani, O., Driouch, I. & Chatei, H. 2020 Numerical investigation of secondary electron emission effect on the dusty plasma sheath with superextensive electrons. Phys. Plasmas 27 (8).CrossRefGoogle Scholar
Foroutan, G. 2010 Fluid simulation of an electrostatic plasma sheath with two species of positive ions and charged nanoparticles. Phys. Plasmas 17 (12), 123711.CrossRefGoogle Scholar
Foroutan, G., Mehdipour, H. & Zahed, H. 2009 Simulation study of the magnetized sheath of a dusty plasma. Phys. Plasmas 16 (10), 103703.CrossRefGoogle Scholar
Furman, M.A. & Pivi, M.T.F. 2002 Probabilistic model for the simulation of secondary electron emission. Phys. Rev. ST Accel. Beams 5 (12), 124404.CrossRefGoogle Scholar
Gong, J. & Du, J. 2012 Secondary electron emissions and dust charging currents in the nonequilibrium dusty plasma with power-law distributions. Phys. Plasmas 19 (6), 063703.CrossRefGoogle Scholar
Hatami, M.M. 2015 Nonextensive statistics and the sheath criterion in collisional plasmas. Phys. Plasmas 22 (1), 013508.CrossRefGoogle Scholar
Hatami, M.M., Tribeche, M. & Mamun, A. 2018 Debye length and electric potential in magnetized nonextensive plasma. Phys. Plasmas 25 (9), 094502.CrossRefGoogle Scholar
Hesar, A.A., Kalejahi, A.E. & Moghanjoughi, M.A. 2017 Effects of a monoenergetic electron beam on the sheath formation in a plasma with a q-nonextensive electron velocity distribution. Phys. Plasmas 24 (6), 063504.CrossRefGoogle Scholar
Kalita, P. & Das, G.C. 2003 Characteristic behaviour of dust grains in a sheath formed in plasma with negative ions. J. Plasma Phys. 69 (6), 551563.CrossRefGoogle Scholar
Khalilpour, H. & Foroutan, V. 2019 Numerical study of an electrostatic plasma sheath with non-thermal electrons and charged nanoparticles. Contrib. Plasma Phys. 60 (1), e201900060.CrossRefGoogle Scholar
Krasheninnikov, S.I., Smirnov, R.D. & Rudakov, D.L. 2011 Dust in magnetic fusion devices. Plasma Phys. Control. Fusion 53 (8), 083001.CrossRefGoogle Scholar
Lima, J., Bezerra, J. & Silva, R. 2002 a Conservative force fields in nonextensive kinetic theory. Physica A 316 (1), 289296.CrossRefGoogle Scholar
Lima, J., Silva, R. & Santos, J. 2002 b Jeans’ gravitational instability and nonextensive kinetic theory. Astron. Astrophys. 396 (1), 309313.CrossRefGoogle Scholar
Liu, J.Y., Wang, D. & Ma, T.C. 2000 The charged dust in processing plasma sheath. Vacuum 59 (1), 126134.CrossRefGoogle Scholar
Liu, J.Y., Zhang, Q., Zou, X., Wang, Z.X., Liu, Y., Wang, X.G. & Gong, Y. 2004 The characteristic of dust in a magnetic plasma sheath. Vacuum 73 (3), 687690.CrossRefGoogle Scholar
Liu, Y., Liu, S.Q. & Zou, L. 2013 Bohm criterion in a dusty plasma with nonextensive electrons and cold ions. Phys. Plasmas 20 (4), 043702.CrossRefGoogle Scholar
Long, J. & Ou, J. 2022 Dust particle surface potential in fusion plasma with supra-thermal electrons. Phys. Plasmas 29 (9), 093701.CrossRefGoogle Scholar
Mahanta, M.K. & Goswami, K.S. 2001 Theory of sheath in a collisional multi-component plasma. Pramana J. Phys. 56 (4), 579584.CrossRefGoogle Scholar
Ma, J.X. & Yu, M.Y. 1995 Electrostatic sheath at the boundary of a dusty plasma. Phys. Plasmas 2 (4), 13431348.CrossRefGoogle Scholar
Masoudi, S.F., Jafari, G.R. & Shorakaee, H.A. 2009 Effect of dust–neutral collisions on the dust characteristics in a magnetized plasma sheath. Vacuum 83 (7), 10311035.CrossRefGoogle Scholar
Mehdipour, H., Denysenko, I. & Ostrikov, K. 2010 Structure of the magnetized sheath of a dusty plasma. Phys. Plasmas 17 (12), 123708.CrossRefGoogle Scholar
Meyer-Vernet, N. 1982 Flip-flop of electric potential of dust grains in space. Astron. Astrophys. 105 (1), 98106.Google Scholar
Nafari, F., Ghoranneviss, M. & Yasserian, K. 2015 Influence of the collisions on the dusty plasma sheath in the presence of an oblique magnetic field. J. Fusion Energy 34 (5), 11151180.CrossRefGoogle Scholar
Ou, J. & Long, J. 2023 Secondary electron emission impact on the tungsten dust particle in a plasma with super-extensive electrons. Contrib. Plasma Phys. 63 (7), e202300001.CrossRefGoogle Scholar
Ou, J., Zhao, X.Y. & Lin, B.B. 2018 Dust charging and levitating in a sheath of plasma containing energetic particles. Chin. Phys. B 27 (2), 025204.CrossRefGoogle Scholar
Paul, R., Deka, K., Sharma, G., Moulick, R., Adhikari, S., Kausik, S.S. & Saikia, B.K. 2023 Study of a collisionless magnetized plasma sheath with nonextensively distributed species. Plasma Sci. Technol. 25 (12), 125001.CrossRefGoogle Scholar
Safa, N., Ghomi, H. & Niknam, A.R. 2014 Effect of the q-nonextensive electron velocity distribution on a magnetized plasma sheath. Phys. Plasmas 21 (8), 082111.CrossRefGoogle Scholar
Sharifian, M., Sharifinejad, H.R., BorhaniZarandi, M. & Niknam, A.R. 2014 Effect of q-non-extensive distribution of electrons on the plasma sheath floating potential. J. Plasma Phys. 80 (4), 607618.CrossRefGoogle Scholar
Shukla, P.K. & Mamun, A.A. 2015 Introduction to Dusty Plasma Physics, 1st edn. CRC Press.CrossRefGoogle Scholar
Sternglass, E.J. 1957 Theory of secondary electron emission by high-speed ions. Phys. Rev. 108 (1), 112.CrossRefGoogle Scholar
Tolias, P. 2014 On secondary electron emission and its semi-empirical description. Plasma Phys. Control. Fusion 56 (12), 123002.CrossRefGoogle Scholar
Tolias, P. 2016 Low energy electron reflection from tungsten surfaces. arXiv:1601.02047.Google Scholar
Tolias, P., Komm, M., Ratynskaia, S. & Podolnik, A. 2020 Origin and nature of the emissive sheath surrounding hot tungsten tokamak surfaces. Nucl. Mater. Energy 25, 100818.CrossRefGoogle Scholar
Tsallis, C. 1988 Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479487.CrossRefGoogle Scholar
Walker, C.G.H., El Gomati, M.M., Assa'd, A.M.D. & Zadrazil, M. 2008 The secondary electron emission yield for 24 solid elements excited by primary electrons in the range 250–5000 eV: a theory/experiment comparison. Scanning 30 (5), 365380.CrossRefGoogle ScholarPubMed
Wang, Z., Liu, Y., Ren, L., Liu, L. & Wang, X. 2006 Bohm criterion for electronegative dusty plasmas. Thin Solid Films 506, 637641.CrossRefGoogle Scholar
Weltmann, K.D. & Woedtke, T.V. 2017 Plasma medicine—current state of research and medical application. Plasma Phys. Control. Fusion 59 (1), 014031.CrossRefGoogle Scholar
Xiu, Z. 2006 Characteristics of dust plasma sheath in an oblique magnetic field. Chin. Phys. Lett. 23 (2), 396.CrossRefGoogle Scholar
Young, J.R. 1957 Some observations on transmission secondary emission. J. Appl. Phys. 28 (4), 512.CrossRefGoogle Scholar
Yu, M.Y., Saleem, H. & Luo, H. 1992 Dusty plasma near a conducting boundary. Phys. Fluids B 4 (10), 34273431.CrossRefGoogle Scholar
Zou, X., Liu, H., Zhu, Y., Zhang, X. & Qiu, M. 2020 The structure of an electronegative magnetized plasma sheath with non-extensive electron distribution. Plasma Sci. Technol. 22 (12), 125001.CrossRefGoogle Scholar