Hostname: page-component-669899f699-b58lm Total loading time: 0 Render date: 2025-04-27T05:42:01.108Z Has data issue: false hasContentIssue false

Sufficient conditions for non-zero entropy of closed relations

Published online by Cambridge University Press:  15 February 2024

IZTOK BANIČ*
Affiliation:
Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor 2000, Slovenia (e-mail: [email protected]) Institute of Mathematics, Physics and Mechanics, Ljubljana 1000, Slovenia Andrej Marušič Institute, University of Primorska, Koper 6000, Slovenia
RENE GRIL ROGINA
Affiliation:
Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor 2000, Slovenia (e-mail: [email protected])
JUDY KENNEDY
Affiliation:
Department of Mathematics, Lamar University, Beaumont, TX 77710,USA (e-mail: [email protected])
VAN NALL
Affiliation:
Department of Mathematics, University of Richmond, Richmond, VA 23173, USA (e-mail: [email protected])

Abstract

We introduce the notions of returns and well-aligned sets for closed relations on compact metric spaces and then use them to obtain non-trivial sufficient conditions for such a relation to have non-zero entropy. In addition, we give a characterization of finite relations with non-zero entropy in terms of Li–Yorke and DC2 chaos.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Banič, I., Erceg, G., Gril Rogina, R. and Kennedy, J.. Minimal dynamical systems with closed relations. Glas. Mat., to appear. Preprint, 2022, arXiv:2205.02907.Google Scholar
Banič, I., Erceg, G. and Kennedy, J.. Closed relations with non-zero entropy that generate no periodic points. Discrete Contin. Dyn. Syst. 42 (2022), 51375166.10.3934/dcds.2022089CrossRefGoogle Scholar
Banič, I., Erceg, G. and Kennedy, J.. A transitive homeomorphism on the Lelek fan. J. Difference Equ. Appl. 29 (2023), 393418.10.1080/10236198.2023.2208242CrossRefGoogle Scholar
Banič, I., Erceg, G., Kennedy, J., Mouron, C. and Nall, V.. Transitive mappings on the Cantor fan. Preprint, 2023, arXiv:2304.03350.Google Scholar
Bing, R. H.. A homogeneous plane continuum. Duke Math. J. 15 (1948), 729742.10.1215/S0012-7094-48-01563-4CrossRefGoogle Scholar
Blanchard, F., Glasner, E., Kolyada, S. and Maass, A.. On Li–Yorke pairs. J. Reine Angew. Math. 547 (2002), 5168.Google Scholar
Cordeiro, W. and Pacfico, M. J.. Continuum-wise expansiveness and specification for set-valued functions and topological entropy. Proc. Amer. Math. Soc. 144 (2016), 42614271.10.1090/proc/13168CrossRefGoogle Scholar
Doleželová-Hantáková, J., Roth, Z. and Roth, S.. On the weakest version of distributional Chaos. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 26 (2016), 113.10.1142/S0218127416502357CrossRefGoogle Scholar
Downarowicz, T.. Positive topological entropy implies chaos DC2. Proc. Amer. Math. Soc. 142(1) (2013), 137149.10.1090/S0002-9939-2013-11717-XCrossRefGoogle Scholar
Erceg, G. and Kennedy, J.. Topological entropy on closed sets in ${[0{,}1]}^2$ . Topology Appl. 246 (2018), 106136.10.1016/j.topol.2018.06.015CrossRefGoogle Scholar
Ingram, W. T.. An Introduction to Inverse Limits with Set-Valued Functions. Springer, New York, NY, 2012.10.1007/978-1-4614-4487-9CrossRefGoogle Scholar
Kelly, J. and Woods, I. D.. Chaotic dynamics in family of set-valued functions. Minnesota J. Undergraduate Math. 3 (2018), 117.Google Scholar
Kennedy, J.. Positive entropy homeomorphisms on the pseudoarc. Michigan Math. J. 36 (1989), 181191.10.1307/mmj/1029003941CrossRefGoogle Scholar
Kennedy, J. and Nall, V.. Dynamical properties of inverse limits with set valued functions. Ergod. Th. & Dynam. Sys. 38 (2018), 14991524.10.1017/etds.2016.73CrossRefGoogle Scholar
Li, J., Yan, K. and Ye, X.. Recurrence properties and disjointness on the induced spaces. Discrete Contin. Dyn. Syst. 35 (2015), 10591073.10.3934/dcds.2015.35.1059CrossRefGoogle Scholar
Liao, G., Wang, L. and Zhang, Y.. Transitivity, mixing and chaos for a class of set-valued mappings. Sci. China Ser. A 49 (2006), 18.10.1007/s11425-004-5234-5CrossRefGoogle Scholar
Loranty, A. and Pawlak, R. J.. On the transitivity of multifunctions and density of orbits in generalized topological spaces. Acta Math. Hungar. 135 (2012), 5666.10.1007/s10474-011-0149-4CrossRefGoogle Scholar
Mahavier, W. S.. Inverse limits with subsets of $[0{,}1]\times [0{,}1]$ . Topology Appl. 141 (2004), 225231.10.1016/j.topol.2003.12.008CrossRefGoogle Scholar
Metzger, R., Arnoldo Morales Rojas, C. and Thieullen, P.. Topological stability in set-valued dynamics. Discrete Contin. Dyn. Syst. Ser. B 22 (2017), 19651975.Google Scholar
Nadler, S. B.. Continuum Theory. An Introduction. Marcel Dekker, Inc., New York, 1992.Google Scholar
Oprocha, P.. Lelek fan admits completely scrambled weakly mixing homeomorphism. Preprint, 2023.Google Scholar
Romn-Flores, H.. A note on transitivity in set-valued discrete systems. Chaos Solitons Fractals 17 (2003), 99104.10.1016/S0960-0779(02)00406-XCrossRefGoogle Scholar
Smítal, J.. Chaotic functions with zero topological entropy. Trans. Amer. Math. Soc. 297(1) (1986), 269282.10.1090/S0002-9947-1986-0849479-9CrossRefGoogle Scholar
Walters, P.. An Introduction to Ergodic Theory. Springer-Verlag, New York, 1982.10.1007/978-1-4612-5775-2CrossRefGoogle Scholar