Article contents
Growth of single-walled carbon nanotube at a low temperature by alcohol catalytic chemical vapor deposition using Ru catalysts
Published online by Cambridge University Press: 09 January 2018
Abstract
Growth of single-walled carbon nanotube (SWCNT) was achieved by an alcohol catalytic chemical vapor deposition (CVD) mechanism that was conducted in a high vacuum using Ru catalysts. By optimizing the ethanol pressure, SWCNTs can grow in a wide range of temperature between 500 °C and 900 °C. Both the yield and crystalline quality of SWCNTs reached their maxima at 700 °C. Significantly, the SWCNT growth was achieved even at 450 °C, which was much lower than the growth temperatures that were required for SWCNT growth using Ru catalysts previously. Raman measurements exhibited that the diameter distribution of the SWCNTs that were grown at 450 °C was quite narrow and (11, 4) nanotubes were dominant. The observations of transmission electron microscope (TEM) suggested that the size of the Ru particles were larger than the diameter of SWCNT. Such a relation was similar to the relation observed in the growth of SWCNTs using Pt catalysts.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2018
References
REFERENCES
A correction has been issued for this article:
- 2
- Cited by
Linked content
Please note a has been issued for this article.