Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T23:26:04.375Z Has data issue: false hasContentIssue false

A characterization of the product of the rational numbers and complete Erdős space

Published online by Cambridge University Press:  27 January 2022

Rodrigo Hernández-Gutiérrez*
Affiliation:
Departamento de Matemáticas, Universidad Autónoma Metropolitana Campus Iztapalapa, Avenida San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340 Mexico City, Mexico
Alfredo Zaragoza
Affiliation:
Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510 Mexico City, Mexico e-mail: [email protected]

Abstract

Erdős space $\mathfrak {E}$ and complete Erdős space $\mathfrak {E}_{c}$ have been previously shown to have topological characterizations. In this paper, we provide a topological characterization of the topological space $\mathbb {Q}\times \mathfrak {E}_{c}$ , where $\mathbb {Q}$ is the space of rational numbers. As a corollary, we show that the Vietoris hyperspace of finite sets $\mathcal {F}(\mathfrak {E}_{c})$ is homeomorphic to $\mathbb {Q}\times \mathfrak {E}_{c}$ . We also characterize the factors of $\mathbb {Q}\times \mathfrak {E}_{c}$ . An interesting open question that is left open is whether $\sigma \mathfrak {E}_{c}^{\omega }$ , the $\sigma $ -product of countably many copies of $\mathfrak {E}_{c}$ , is homeomorphic to $\mathbb {Q}\times \mathfrak {E}_{c}$ .

Type
Article
Copyright
© Canadian Mathematical Society, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work is part of the doctoral work of the second-named author at UNAM, Mexico City, under the direction of the first-named author. This research was supported by a CONACyT doctoral scholarship with number 696239.

References

Dijkstra, J. J., Characterizing stable complete Erdős space . Israel J. Math. 186(2011), 477507.CrossRefGoogle Scholar
Dijkstra, J. J. and van Mill, J., Characterizing complete Erdős space . Canad. J. Math. 61(2009), no. 1, 124140.CrossRefGoogle Scholar
Dijkstra, J. J. and van Mill, J., Erdős space and homeomorphism groups of manifolds, Memoirs of the American Mathematical Society, 979, American Mathematical Society, Providence, RI, 2010.CrossRefGoogle Scholar
Dijkstra, J. J., van Mill, J., and Steprāns, J., Complete Erdős space is unstable . Math. Proc. Cambridge Philos. Soc. 137(2004), no. 2, 465473.CrossRefGoogle Scholar
van Engelen, A. J. M., Homogeneous zero-dimensional absolute Borel sets, CWI Tracts, 27, Centrum voor Wiskunde en Informatica, Amsterdam, 1986.Google Scholar
Erdős, P., The dimension of the rational points in Hilbert space . Ann. of Math. (2) 41(1940), 734736.CrossRefGoogle Scholar
Kawamura, K., Oversteegen, L. G., and Tymchatyn, E. D., On homogeneous totally disconnected 1-dimensional spaces . Fund. Math. 150(1996), no. 2, 97112.CrossRefGoogle Scholar
Knaster, B. and Reichbach, M., Notion d’homogénéité et prolongements des homéomorphies . Fund. Math. 40(1953), 180193.CrossRefGoogle Scholar
Lelek, A., On plane dendroids and their end points in the classical sense . Fund. Math. 49(1961), 301319.CrossRefGoogle Scholar
Lipham, S. D., A characterization of Erdős space factors . Israel J. Math. 246(2021), 395402.CrossRefGoogle Scholar
Michael, E., Topologies on spaces of subsets . Trans. Amer. Math. Soc. 71(1951), 152182.CrossRefGoogle Scholar
van Mill, J., Characterization of some zero-dimensional separable metric spaces . Trans. Amer. Math. Soc. 264(1981), 205215.CrossRefGoogle Scholar
van Mill, J., The infinite-dimensional topology of function spaces, North-Holland Mathematical Library, 64, Elsevier, Amsterdam, 2001.Google Scholar
Zaragoza, A., Symmetric products of Erdős space and complete Erdős space . Topology Appl. 284(2020), 107355.CrossRefGoogle Scholar
Zaragoza, A., The Vietoris hyperspace of finite sets of Erdős space . Topology Appl. 310(2021), 107943.CrossRefGoogle Scholar