Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T20:15:55.210Z Has data issue: false hasContentIssue false

Unconjugated bilirubin and schizophrenia: a systematic review

Published online by Cambridge University Press:  27 March 2019

Erik Pommerening Dornelles
Affiliation:
Clínica Universitária de Psiquiatria e Psicologia Médica, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
João Gama Marques*
Affiliation:
Clínica Universitária de Psiquiatria e Psicologia Médica, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal Consulta de Esquizofrenia Resistente, Hospital Júlio de Matos, Centro Hospitalar Psiquiátrico de Lisboa, Lisboa, Portugal
Sílvia Ouakinin
Affiliation:
Clínica Universitária de Psiquiatria e Psicologia Médica, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
*
*Address for correspondence: João Gama Marques, Hospital Júlio de Matos, Avenida do Brasil, 53, 1749-002 Lisboa, Portugal, Europe. (Email: [email protected])

Abstract

Schizophrenia is a complex syndrome of unknown etiology and difficult to manage. Unconjugated bilirubin has been researched as a potential biological marker of this syndrome. The objective of this review article was to gather the studies published to date on the relationship between this molecule and schizophrenia. Broad inclusion criteria have been used (PRISMA) to include as many relevant studies as possible. Fourteen studies were selected: 3 analyzed the effects of unconjugated hyperbilirubinemia in animal models; 6 demonstrated an increased incidence of schizophrenia in patients with increased unconjugated bilirubin; 2 reported an increased incidence of the disease in patients with decreased unconjugated bilirubin; and 3 linked an increased incidence of schizophrenia with an increased excretion of the oxidative product of bilirubin, the so-called biopyrrins. Because of apparently contradictory reported results, the hypothesis that the relationship between schizophrenia and unconjugated bilirubin was not linear and that there was an inflammatory dysfunction explaining this was considered. The 2 most accepted models for the pathophysiology of schizophrenia are described, and the possible role of the molecule in each is clarified. The bilirubin buffer system and its role in antioxidant defense was explored. The average levels of unconjugated bilirubin in patients with schizophrenia, schizoaffective disorder, and bipolar disorder were also compared, having been hypothesized that these diseases could be different points of a same pathological spectrum. Finally, it was concluded that unconjugated bilirubin is a promising molecule that could be used as a possible biological marker for schizophrenia, and the necessity of subsequent efforts for its research was considered.

Type
Review
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Insel, TR. Rethinking schizophrenia. Nature. 2010; 468(7321): 187193.CrossRefGoogle ScholarPubMed
Hallak, JEC, de Paula, AL, Chaves, C, Bressan, RA, Machado-de-Sousa JP. An overview on the search for schizophrenia biomarkers. CNS Neurol Disord Drug Targets. 2015; 14(8): 9961000.CrossRefGoogle ScholarPubMed
Hirschfield, GM, Alexander, GJ. Review article Gilbert’s syndrome: an overview for clinical biochemists. Ann Clin Biochem. 2006; 43(5): 340343.CrossRefGoogle ScholarPubMed
Miyaoka, T, Seno, H, Itoga, M, Iijima, M, Inagaki, T, Horiguchi, J. Schizophrenia-associated idiopathic unconjugated hyperbilirubinemia (Gilbert’s syndrome). J Clin Psychiatry. 2000; 61(11): 868871.CrossRefGoogle Scholar
Semnani, Y, Nazemi, F, Azariyam, A, Ardakani, MJ. Alteration of serum bilirubin level in schizophrenia. Int J Psychiatry Clin Pract. 2010; 14(4): 262267.CrossRefGoogle Scholar
Radhakrishnan, R, Kanigere, M, Menon, J, Calvin, S, Janish, A, Srinivasan, K. Association between unconjugated bilirubin and schizophrenia. Psychiatry Res. 2011; 189(3): 480482.CrossRefGoogle Scholar
Miyaoka, T, Wake, R, Hayashida, M, Horiguchi, J. Schizophrenia and idiopathic unconjugated hyperbilirubinemia (Gilbert’s Syndrome). Cent Nerv Syst Agents Med Chem. 2008; 8(4): 257259.CrossRefGoogle Scholar
Brites, D. The evolving landscape of neurotoxicity by unconjugated bilirubin: role of glial cells and inflammation. Front Pharmacol. 2012; 3(May): 88.CrossRefGoogle ScholarPubMed
Hayashida, M, Miyaoka, T, Tsuchie, K, et al. Hyperbilirubinemia-related behavioral and neuropathological changes in rats: a possible schizophrenia animal model. Prog Neuropsychopharmacol Biol Psychiatry. 2009; 33(4): 581588.CrossRefGoogle ScholarPubMed
Gama-Marques, J, Tinoco, I, Pedro, I, Leote, F, Silva, R, Ouakinin, S. Unconjugated bilirubin and acute schizophrenia: a probable correlation? Actas Esp Psiquitr. 2017; 189(3): 7988.Google Scholar
Doré, S, Takahashi, M, Ferris, CD, Hester, LD, Guastella, D, Snyder, SH. Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc Natl Acad Sci USA. 1999; 96(5): 24452450.CrossRefGoogle ScholarPubMed
Hankø, E, Hansen, TWR, Almaas, R, Lindstad, J, Rootwelt, T. Bilirubin induces apoptosis and necrosis in human NT2-N neurons. Pediatr Res. 2005; 57(2): 179184.CrossRefGoogle ScholarPubMed
Brito, MA, Rosa, AI, Falcão, AS, et al. Unconjugated bilirubin differentially affects the redox status of neuronal and astroglial cells. Neurobiol Dis. 2008; 29(1): 3040.CrossRefGoogle ScholarPubMed
Conforti, L, Adalbert, R, Coleman, MP. Neuronal death: where does the end begin? Trends Neurosci. 2007; 30(4): 159166.CrossRefGoogle ScholarPubMed
Rodrigues, CMP, Solá, S, Castro, RE, Laires, PA, Brites, D, Moura, JJ. Perturbation of membrane dynamics in nerve cells as an early event during bilirubin-induced apoptosis. J Lipid Res. 2002; 43(6): 885894.Google ScholarPubMed
Khan, NM, Poduval, TB. Immunomodulatory and immunotoxic effects of bilirubin: molecular mechanisms. J Leukoc Biol. 2011; 90(5): 9971015.CrossRefGoogle ScholarPubMed
Brito, MA, Silva, RF, Brites, D. Bilirubin induces loss of membrane lipids and exposure of phosphatidylserine in human erythrocytes. Cell Biol Toxicol. 2002; 18(3): 181192.CrossRefGoogle ScholarPubMed
Falcão, AS, Silva, RF, Pancadas, S, Fernandes, A, Brito, MA, Brites, D. Apoptosis and impairment of neurite network by short exposure of immature rat cortical neurons to unconjugated bilirubin increase with cell differentiation and are additionally enhanced by an inflammatory stimulus. J Neurosci Res. 2007; 85(6): 12291239.CrossRefGoogle ScholarPubMed
Fernandes, A, Falcão, AS, Abranches, E, et al. Bilirubin as a determinant for altered neurogenesis, neuritogenesis, and synaptogenesis. Dev Neurobiol. 2009; 69(9): 568582.CrossRefGoogle ScholarPubMed
Shi, HB, Kakazu, Y, Shibata, S, Matsumoto, N, Nakagawa, T, Komune, S. Bilirubin potentiates inhibitory synaptic transmission in lateral superior olive neurons of the rat. Neurosci Res. 2006; 55(2): 161170.CrossRefGoogle ScholarPubMed
Chang, FY, Lee, CC, Huang, CC, Hsu, KS. Unconjugated bilirubin exposure impairs hippocampal long-term synaptic plasticity. PLoS One. 2009; 4(6): e5876.CrossRefGoogle ScholarPubMed
Bellefontaine, N, Hanchate, NK, Parkash, J, et al. Nitric oxide as key mediator of neuron-to-neuron and endothelia-to-glia communication involved in the neuroendocrine control of reproduction. Neuroendocrinology. 2011; 93(2): 7489.CrossRefGoogle ScholarPubMed
Falcão, AS, Fernandes, A, Brito, MA, Silva, RF, Brites, D. Bilirubin-induced immunostimulant effects and toxicity vary with neural cell type and maturation state. Acta Neuropathol. 2006; 112(1): 95105.CrossRefGoogle ScholarPubMed
Solá, S, Diógenes, MJ, Brites, D, Rodrigues, CM. [Release of cytochrome C with the interaction of bilirubin, amyloid beta-peptide and glycochenodeoxycholate from isolated mitochondria]. Acta Med Port. 2002; 15(4): 269275.Google ScholarPubMed
Rodrigues, CMP, Solá, S, Brites, D. Bilirubin induces apoptosis via the mitochondrial pathway in developing rat brain neurons. Hepatology. 2002; 35(5): 11861195.CrossRefGoogle ScholarPubMed
Streit, WJ. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia. 2002; 40(2): 133139.CrossRefGoogle ScholarPubMed
Nair, A, Frederick, TJ, Miller, SD. Astrocytes in multiple sclerosis: a product of their environment. Cell Mol Life Sci. 2008; 65(17): 27022720.CrossRefGoogle ScholarPubMed
Orellana, JA, Sáez, PJ, Shoji, KF, et al. Modulation of brain hemichannels and gap junction channels by pro-inflammatory agents and their possible role in neurodegeneration. Antioxid Redox Signal. 2009; 11(2): 369399.CrossRefGoogle ScholarPubMed
Fernandes, A, Silva, RFM, Falcão, AS, Brito, MA, Brites, D. Cytokine production, glutamate release and cell death in rat cultured astrocytes treated with unconjugated bilirubin and LPS. J Neuroimmunol. 2004; 153(1–2): 6475.CrossRefGoogle ScholarPubMed
Falcão, AS, Fernandes, A, Brito, MA, Silva, RF, Brites, D. Bilirubin-induced inflammatory response, glutamate release, and cell death in rat cortical astrocytes are enhanced in younger cells. Neurobiol Dis. 2005; 20(2): 199206.CrossRefGoogle ScholarPubMed
Silva, R, Mata, LR, Gulbenkian, S, Brito, MA, Tiribelli, C, Brites, D. Inhibition of glutamate uptake by unconjugated bilirubin in cultured cortical rat astrocytes: role of concentration and pH. Biochem Biophys Res Commun. 1999; 265(1): 6772.CrossRefGoogle Scholar
Silva, RF, Mata, LM, Gulbenkian, S, Brites, D. Endocytosis in rat cultured astrocytes is inhibited by unconjugated bilirubin. Neurochem Res. 2001; 26(7): 793800.CrossRefGoogle ScholarPubMed
Fernandes, A, Barateiro, A, Falcão, AS, et al. Astrocyte reactivity to unconjugated bilirubin requires TNF-α and IL-1β receptor signaling pathways. Glia. 2011; 59(1): 1425.CrossRefGoogle ScholarPubMed
Favrais, G, van de Looij, Y, Fleiss, B, et al. Systemic inflammation disrupts the developmental program of white matter. Ann Neurol. 2011; 70(4): 550565.CrossRefGoogle ScholarPubMed
Harry, GJ, Kraft, AD. Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology. 2012; 33(2): 191206.CrossRefGoogle ScholarPubMed
Ladeby, R, Wirenfeldt, M, Garcia-Ovejero, D, et al. Microglial cell population dynamics in the injured adult central nervous system. Brain Res Brain Res Rev. 2005; 48(2): 196206.CrossRefGoogle ScholarPubMed
Graeber, MB. Changing face of microglia. Science. 2010; 330(6005): 783788. doi: 10.1126/science.1190929CrossRefGoogle ScholarPubMed
Paolicelli, RC, Bolasco, G, Pagani, F, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011; 333(6048): 14561458.CrossRefGoogle ScholarPubMed
Carson, MJ, Bilousova, TV, Puntambekar, SS, Melchior, B, Doose, JM, Ethell, IM. A rose by any other name? The potential consequences of microglial heterogeneity during CNS health and disease. Neurotherapeutics. 2007; 4(4): 571579.CrossRefGoogle ScholarPubMed
Floyd, RA, Hensley, K. Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging. 2002; 23(5): 795807.CrossRefGoogle ScholarPubMed
Depino, A, Ferrari, C, Pott Godoy, MC, Tarelli, R, Pitossi, FJ. Differential effects of interleukin-1β on neurotoxicity, cytokine induction and glial reaction in specific brain regions. J Neuroimmunol. 2005; 168(1–2): 96110.CrossRefGoogle ScholarPubMed
Gordo, AC, Falcão, AS, Fernandes, A, Brito, MA, Silva, RF, Brites, D. Unconjugated bilirubin activates and damages microglia. J Neurosci Res. 2006; 84(1): 194201.CrossRefGoogle ScholarPubMed
Graber, DJ, Snyder-Keller, A, Lawrence, DA, Turner, JN. Neurodegeneration by activated microglia across a nanofiltration membrane. J Biochem Mol Toxicol. 2012; 26(2): 4553.CrossRefGoogle ScholarPubMed
Silva, SL, Vaz, AR, Barateiro, A, et al. Features of bilirubin-induced reactive microglia: from phagocytosis to inflammation. Neurobiol Dis. 2010; 40(3): 663675.CrossRefGoogle ScholarPubMed
Haustein, MD, Read, DJ, Steinert, JR, Pilati, N, Dinsdale, D, Forsythe, ID. Acute hyperbilirubinaemia induces presynaptic neurodegeneration at a central glutamatergic synapse. J Physiol. 2010; 588(Pt 23): 46834693.CrossRefGoogle Scholar
Feng, J, Li, M, Wei, Q, Li, S, Song, S, Hua, Z. Unconjugated bilirubin induces pyroptosis in cultured rat cortical astrocytes. J Neuroinflammation. 2018; 15(1): 23.CrossRefGoogle ScholarPubMed
Bergsbaken, T, Fink, SL, Cookson, BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009; 7(2): 99109.CrossRefGoogle ScholarPubMed
Gunn, CK. Hereditary Acholuric Jaundice in the Rat. Can Med Assoc J. 1944; 50(3): 230237.Google ScholarPubMed
Rice, AC, Shapiro, SM. A new animal model of hemolytic hyperbilirubinemia-induced bilirubin encephalopathy (kernicterus). Pediatr Res. 2008; 64(3): 265269.CrossRefGoogle Scholar
Rose, AL, Wisniewski, H. Acute bilirubin encephalopathy induced with sulfadimethoxine in Gunn rats. J Neuropathol Exp Neurol. 1979; 38(2): 152164.CrossRefGoogle ScholarPubMed
Carpenter, WT, Koenig, JI. The evolution of drug development in schizophrenia: past issues and future opportunities. Neuropsychopharmacology. 2008; 33(9): 20612079.CrossRefGoogle ScholarPubMed
Nabeshima, T, Yamada, K, Yamaguchi, K, Hiramatsu, M, Furukawa, H, Kameyama, T. Effect of lesions in the striatum, nucleus accumbens and medial raphe on phencyclidine-induced stereotyped behaviors and hyperactivity in rats. Eur J Pharmacol. 1983; 91(4): 455462.CrossRefGoogle ScholarPubMed
Braff, DL, Geyer, MA. Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry. 1990; 47(2): 181188.CrossRefGoogle ScholarPubMed
Liaury, K, Miyaoka, T, Tsumori, T, et al. Morphological features of microglial cells in the hippocampal dentate gyrus of Gunn rat: a possible schizophrenia animal model. J Neuroinflammation. 2012; 9(1): 56.CrossRefGoogle ScholarPubMed
Streit, WJ, Graeber, MB, Kreutzberg, GW. Functional plasticity of microglia: a review. Glia. 1988; 1(5): 301307.CrossRefGoogle ScholarPubMed
Sierra, A, Encinas, JM, Deudero, JJP, et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell. 2010; 7(4): 483495.CrossRefGoogle ScholarPubMed
Shenton, ME, Dickey, CC, Frumin, M, McCarley, RW. A review of MRI findings in schizophrenia. Schizophr Res. 2001; 49(1–2): 152.CrossRefGoogle Scholar
Velakoulis, D, Wood, SJ, Wong, MTH, et al. Hippocampal and amygdala volumes according to psychosis stage and diagnosis: a magnetic resonance imaging study of chronic schizophrenia, first-episode psychosis, and ultra-high-risk individuals. Arch Gen Psychiatry. 2006; 63(2): 139149.CrossRefGoogle ScholarPubMed
Schobel, SA, Chaudhury, NH, Khan, UA, et al. Imaging patients with psychosis and a mouse model establishes a spreading pattern of hippocampal dysfunction and implicates glutamate as a driver. Neuron. 2013; 78(1): 8193.CrossRefGoogle Scholar
Tsuchie, K, Miyaoka, T, Furuya, M, et al. The effects of antipsychotics on behavioral abnormalities of the Gunn rat (unconjugated hyperbilirubinemia rat), a rat model of schizophrenia. Asian J Psychiatr. 2013; 6(2): 119123.CrossRefGoogle Scholar
Powell, CM, Miyakawa, T. Schizophrenia-relevant behavioral testing in rodent models: a uniquely human disorder? Biol Psychiatry. 2006; 59(12): 11981207.CrossRefGoogle ScholarPubMed
Müller, N, Schiller, P, Ackenheil, M. Coincidence of schizophrenia and hyperbilirubinemia. Pharmacopsychiatry. 1991; 24(6): 225228.CrossRefGoogle ScholarPubMed
Bach, DR, Kindler, J, Strik, WK. Elevated bilirubin in acute and transient psychotic disorder. Pharmacopsychiatry. 2010; 43(1): 1216.CrossRefGoogle ScholarPubMed
Gama Marques, J. Mitsuda psychosis and holodysphrenia revisited: an atypical psychosis in a patient with parieto-occipital paroxysmal electroencephalographic activity and high unconjugated bilirubin. Psychiatry Clin Neurosci. 2017; 71(2): 148149.CrossRefGoogle Scholar
Yao, JK, Reddy, R, van Kammen, DP. Abnormal age-related changes of plasma antioxidant proteins in schizophrenia. Psychiatry Res. 2000; 97(2–3): 137151.CrossRefGoogle Scholar
Vítek, L, Novotná, M, Lenícek, M, et al. Serum bilirubin levels and UGT1A1 promoter variations in patients with schizophrenia. Psychiatry Res. 2010; 178(2): 449450.CrossRefGoogle ScholarPubMed
Yamaguchi, T, Shioji, I, Sugimoto, A, Komoda, Y, Nakajima, H. Chemical structure of a new family of bile pigments from human urine. J Biochem. 1994; 116(2): 298303.CrossRefGoogle ScholarPubMed
Yamaguchi, T, Shioji, I, Sugimoto, A, Yamaoka, M. Psychological stress increases bilirubin metabolites in human urine. Biochem Biophys Res Commun. 2002; 293(1): 517520.CrossRefGoogle ScholarPubMed
Miyaoka, T, Yasukawa, R, Yasuda, H, et al. Urinary excretion of biopyrrins, oxidative metabolites of bilirubin, increases in patients with psychiatric disorders. Eur Neuropsychopharmacol. 2005; 15(3): 249252.CrossRefGoogle ScholarPubMed
Yasukawa, R, Miyaoka, T, Yasuda, H, Hayashida, M, Inagaki, T, Horiguch, J. Increased urinary excretion of biopyrrins, oxidative metabolites of bilirubin, in patients with schizophrenia. Psychiatry Res. 2007; 153(2): 203207.CrossRefGoogle ScholarPubMed
Miyaoka, T, Ieda, M, Hashioka, S, et al. Analysis of oxidative stress expressed by urinary level of biopyrrins and 8-hydroxydeoxyguanosine in patients with chronic schizophrenia. Psychiatry Clin Neurosci. 2015; 69(11): 693698.CrossRefGoogle ScholarPubMed
Bora, E, Murray, RM. Meta-analysis of cognitive deficits in ultra-high risk to psychosis and first-episode psychosis: do the cognitive deficits progress over, or after, the onset of psychosis? Schizophr Bull. 2014; 40(4): 744755.CrossRefGoogle ScholarPubMed
Rapoport, JL, Giedd, JN, Gogtay, N. Neurodevelopmental model of schizophrenia: update 2012. Mol Psychiatry. 2012; 17(12): 12281238.CrossRefGoogle ScholarPubMed
Rund, BR. The research evidence for schizophrenia as a neurodevelopmental disorder. Scand J Psychol. 2018; 59(1): 4958.CrossRefGoogle ScholarPubMed
Rund, BR. Does active psychosis cause neurobiological pathology? A critical review of the neurotoxicity hypothesis. Psychol Med. 2014; 44(8): 15771590.CrossRefGoogle ScholarPubMed
Lieberman, JA. Pathophysiologic mechanisms in the pathogenesis and clinical course of schizophrenia. J Clin Psychiatry. 1999; 60 Suppl 1(suppl 12): 912.Google ScholarPubMed
Buoli, M, Serati, M, Caldiroli, A, Cremaschi, L, Altamura, AC. Neurodevelopmental versus neurodegenerative model of schizophrenia and bipolar disorder: comparison with physiological brain development and aging. Psychiatr Danub. 2017; 29(1): 2427.CrossRefGoogle ScholarPubMed
Gilmore, JH, Fredrik Jarskog, L, Vadlamudi, S, Lauder, JM. Prenatal infection and risk for schizophrenia: IL-1β, IL-6, and TNFalpha inhibit cortical neuron dendrite development. Neuropsychopharmacology. 2004; 29(7): 12211229.CrossRefGoogle ScholarPubMed
Haukvik, UK, Hartberg, CB, Agartz, I. Schizophrenia– what does structural MRI show? Tidsskr Nor Lægeforening. 2013; 133(8): 811.Google Scholar
Potash, JB. Carving chaos: genetics and the classification of mood and psychotic syndromes. Harv Rev Psychiatry. 2006; 14(2): 4763.CrossRefGoogle ScholarPubMed
Potash, JB, Bienvenu, OJ. Neuropsychiatric disorders: shared genetics of bipolar disorder and schizophrenia. Nat Rev Neurol. 2009; 5(6): 299300.CrossRefGoogle Scholar
Keshavan, MS, Morris, DW, Sweeney, JA, et al. A dimensional approach to the psychosis spectrum between bipolar disorder and schizophrenia: the Schizo-Bipolar Scale. Schizophr Res. 2011; 133(1–3): 250254.CrossRefGoogle ScholarPubMed
Kapitulnik, J, Maines, MD. The role of bile pigments in health and disease: effects on cell signaling, cytotoxicity, and cytoprotection. Front Pharmacol. 2012; 3: 136.CrossRefGoogle ScholarPubMed
Gama Marques, J, Arantes-Gonçalves, F. A perspective on a possible relation between the psychopathology of the schizophrenia/schizoaffective spectrum and unconjugated bilirubin: a longitudinal protocol study. Front Psychiatry. 2018; 9: 146.CrossRefGoogle ScholarPubMed