Published online by Cambridge University Press: 21 January 2018
Monte Carlo calculation method is considered to be the most accurate method for dose calculation in radiotherapy. The purpose of this research is comparison between 6 MV Primus LINAC simulation output with commissioning data using EGSnrc and build a Monte Carlo geometry of 6 MV Primus LINAC as realistically as possible. The BEAMnrc and DOSXYZnrc (EGSnrc package) Monte Carlo model of the LINAC head was used as a benchmark.
In the first part, the BEAMnrc was used for the designing of the LINAC treatment head. In the second part, dose calculation and for the design of 3D dose file were produced by DOSXYZnrc. The simulated PDD and beam profile obtained were compared with that calculated using commissioning data. Good agreement was found between calculated PDD (1·1%) and beam profile using Monte Carlo simulation and commissioning data. After validation, TPR20,10, TMR and Sp values were calculated in five different field.
Good agreement was found between calculated values by using Monte Carlo simulation and commissioning data. Average differences for five field sizes in this approach is about 0·83% for Sp. for TPR20,10 differences for field sizes 10×10 cm2 is 0·29% and for TMR in five field sizes, the average value is ~1·6%.
In conclusion, the BEAMnrc and DOSXYZnrc codes package have very good accuracy in calculating dose distribution for 6 MV photon beam and it can be considered as a promising method for patient dose calculations and also the Monte Carlo model of primus linear accelerator built in this study can be used as method to calculate the dose distribution for cancer patients.
Please note a has been issued for this article.