Hostname: page-component-669899f699-tzmfd Total loading time: 0 Render date: 2025-04-28T08:37:24.158Z Has data issue: false hasContentIssue false

Genotyping of benzimidazole resistance using β-tubulin isotype 1 marker in Haemonchus contortus of sheep and goats in Paraná, Southern Brazil

Published online by Cambridge University Press:  10 December 2024

C. Melchior do Prado*
Affiliation:
Laboratory of Veterinary Clinical Parasitology, Federal University of Parana, UFPR. Rua dos Funcionários, 1540, Cabral. CEP: 80035-050. Curitiba, PR, Brazil
J. Ferreira Vasconcelos Rodrigues
Affiliation:
Laboratory of Veterinary Clinical Parasitology, Federal University of Parana, UFPR. Rua dos Funcionários, 1540, Cabral. CEP: 80035-050. Curitiba, PR, Brazil
G.A. Frota
Affiliation:
State University of Acaraú Valley. Av. Padre Francisco S. de Araújo, 850, Alto da Brasília. CEP: 62010-295. Sobral, CE, Brazil
D.L. Vieira
Affiliation:
Laboratory of Veterinary Clinical Parasitology, Federal University of Parana, UFPR. Rua dos Funcionários, 1540, Cabral. CEP: 80035-050. Curitiba, PR, Brazil
J.P. Monteiro
Affiliation:
State University of Acaraú Valley. Av. Padre Francisco S. de Araújo, 850, Alto da Brasília. CEP: 62010-295. Sobral, CE, Brazil Embrapa Caprinos e Ovinos. Estrada Sobral-Groaíras, Km 04, s/n, Zona Rural. CEP: 62010-970. Sobral, CE, Brazil
M. Beltrão Molento*
Affiliation:
Laboratory of Veterinary Clinical Parasitology, Federal University of Parana, UFPR. Rua dos Funcionários, 1540, Cabral. CEP: 80035-050. Curitiba, PR, Brazil
*
Corresponding authors: M.B. Molento and C.M. Prado; Emails: [email protected]; [email protected]
Corresponding authors: M.B. Molento and C.M. Prado; Emails: [email protected]; [email protected]

Abstract

Haemonchus contortus is one of the most pathogenic gastrointestinal parasites that infect small ruminants. The indiscriminate use of anthelmintics (i.e., benzimidazole class, BZ) to control infections has led to the reduction of drug efficacy in H. contortus populations worldwide. Resistance to BZ is associated with high frequencies of single nucleotide polymorphisms at F200Y, F167Y, and E198A positions of the β-tubulin isotype 1 gene. This study aimed to determine the frequency of single nucleotide polymorphisms associated with BZ resistance in H. contortus from 18 farms (545 sheep and 124 goats) in Paraná, Southern Brazil. Health management practices were identified as risk factors from individual farms. Genomic DNA was extracted from 20,000 larvae/farm and used in quantitative polymerase chain reaction assays for the three mutations. We ran a correlation analysis between flock health and quantitative polymerase chain reaction data. H. contortus was the most prevalent parasite in 67% (12/18) of the farms. Resistant allele frequencies were detected for F200Y (var. 46.4 to 72.0%) and F167Y (var. 15.7 to 23.8%). Only (100.0%) susceptible alleles were detected for the E198A. High treatment frequency (15/18), visual weight estimations for anthelmintic dose (15/18), no integration with other farm practices (14/18), treatment of all animals (14/18), and no quarantine period for newly acquired animals (10/18) were considered the most critical risk factors associated with BZ resistance. This is the first systematic prevalence study linking management practices on smallholder farms and the molecular data of BZ resistance of H. contortus in Southern Brazil.

Type
Research Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Amaral, R.L.G., Guerra, N.R., Santana, I.M., Chicoy-Ramirez, Y., Arenal, A., Lima, M.M., Alves, L.C., Molento, M.B., and Faustino, M.A.G. (2021) Molecular diagnostic of Haemonchus contortus resistance to the benzimidazole group in sheep and goats in the state of Pernambuco, Brazil. Archives of Veterinary Science 26(3), 5971.Google Scholar
Aparecido, L.E.O., Rolim, G.S., Richetti, J., Souza, P.S., and Johann, J.A. (2016) Köppen, Thornthwaite and Camargo climate classifications for climatic zoning in the State of Paraná, Brazil. Ciência e Agrotecnologia 40, 405417. Doi: 10.1590/1413-70542016404003916.CrossRefGoogle Scholar
Ashraf, S., Mani, T., Beech, R., and Prichard, R. (2015) Macrocyclic lactones and their relationship to the SNPs related to benzimidazole resistance. Molecular and Biochemical Parasitology 201(2), 128134. doi: 10.1016/j.molbiopara.2015.07.007CrossRefGoogle Scholar
Avramenko, R. W., Redman, E. M., Lewis, R., Yazwinski, T. A., Wasmuth, J.D., and Gilleard, J.S. (2015). Exploring the gastrointestinal “nemabiome”: deep amplicon sequencing to quantify the species composition of parasitic nematode communities. PLoS One 10(12), e0143559. Doi: 10.1371/journal.pone.0143559CrossRefGoogle ScholarPubMed
Avramenko, R.W., Redman, E.M., Lewis, R., Bichuette, M.A., Palmeira, B.M., Yazwinski, T.A., and Gilleard, J.S. (2017). The use of nemabiome metabarcoding to explore gastro-intestinal nematode species diversity and anthelmintic treatment effectiveness in beef calves. International Journal for Parasitology 47(13), 893902. doi: 10.1016/j.ijpara.2017.06.006CrossRefGoogle ScholarPubMed
Baltrušis, P., Halvarsson, P., and Höglund, J. (2018) Exploring benzimidazole resistance in Haemonchus contortus by next-generation sequencing and droplet digital PCR. International Journal for Parasitology: Drugs and Drug Resistance 8, 411419. doi: 10.1016/j.ijpddr.2018.09.003Google ScholarPubMed
Barrère, V., Alvarez, L., Suarez, G., Ceballos, L., Moreno, L., Lanusse, C., and Prichard, R.K. (2012) Relationship between increased albendazole systemic exposure and changes in single nucleotide polymorphisms on the β-tubulin isotype 1 encoding gene in Haemonchus contortus. Veterinary Parasitology 186, 344349. doi: 10.1016/j.vetpar.2011.11.068CrossRefGoogle ScholarPubMed
Barrère, V., Keller, K., Von Samson-Himmelstjerna, G., and Prichard, R.K. (2013) Efficiency of a genetic test to detect benzimidazole resistant Haemonchus contortus nematodes in sheep farms in Quebec, Canada. Parasitology International 62, 464470. doi: 10.1016/j.parint.2013.06.001CrossRefGoogle ScholarPubMed
Brasil, B.S.A.F., Nunes, R.L.A., Bastianetto, E.B., Drummond, M.G., Carvalho, D.C., Leite, R.C., Molento, M.B., and Oliveira, D.A.A. (2012) Genetic diversity patterns of Haemonchus placei and Haemonchus contortus populations isolated from domestic ruminants in Brazil. International Journal for Parasitology: Drugs and Drug Resistance 42, 469479. doi: 10.1016/j.ijpara.2012.03.003CrossRefGoogle ScholarPubMed
Chagas, A.M., Sampaio Junior, F.D., Pacheco, A., Cunha, A.B., Cruz, J.S., Scofield, A., and Goés-Cavalcante, G. (2016) F2OOY polymorphism of the β-tubulin isotype 1 gene in Haemonchus contortus and sheep flock management practices related to anthelmintic resistance in eastern Amazon. Veterinary Parasitology 226, 104108. doi: 10.1016/j.vetpar.2016.06.038CrossRefGoogle ScholarPubMed
Costa-Junior, L.M., Chaudhry, U.N., Silva, C.R., Sousa, D.M., Silva, N.C., Cutrim-Júnior, J.A., Brito, D.R., and Sargison, N.D. (2021). Nemabiome metabarcoding reveals differences between gastrointestinal nematode species infecting co-grazed sheep and goats. Veterinary Parasitology 289, 109339. doi: 10.1016/j.vetpar.2020.109339CrossRefGoogle ScholarPubMed
Cruz, D.G., Rocha, L.O., Arruda, S.S., Palieraqui, J.G.B., Cordeiro, R.C., Santos Junior, E., Molento, M.B., and Santos, C.P. (2010) Anthelmintic efficacy and management practices in sheep farms from the state of Rio de Janeiro, Brazil. Veterinary Parasitology 170, 340343. doi:10.1016/j.vetpar.2010.02.030.CrossRefGoogle ScholarPubMed
Cunha Filho, L.F.C., Pereira, A.B.L., and Yahamamura, M.H. (1998) Resistance anthelmintic in sheep in the region of Londrina, Parana State, Brazil. Semina Ciências Agrarias 19, 3137. doi: 10.5433/1679-0359.1998v19n1p31CrossRefGoogle Scholar
Echevarria, F.A.M., Armour, J., and Duncan, J.L. (1991) Efficacy of some anthelmintics on an ivermectin-resistant strain of Haemonchus contortus in sheep. Veterinary Parasitology 39, 279284. doi: 10.1016/0304-4017(91)90044-VCrossRefGoogle Scholar
Elmahalawy, S.T., Halvarsson, P., Skarin, M., and Höglund, J. (2018) Genetic variants in dyf-7 validated by droplet digital PCR are not drivers for ivermectin resistance in Haemonchus contortus. International Journal for Parasitology: Drugs and Drug Resistance 8, 278286. doi: 10.1016/j.ijpddr.2018.04.005.Google Scholar
Fávero, F.C., Santos, L.B., Araújo, F., Ramunke, S., Krucken, J., Von Samson-Himmelstjerna, G., and Borges, F.A. (2020) Haemonchus sp. in beef cattle in Brazil: species composition and frequency of benzimidazole resistance alleles. Preventive Veterinary Medicine 185, 105162. doi: 10.1016/j.prevetmed.2020.105162CrossRefGoogle ScholarPubMed
Fissiha, W. and Kinde, M. Z. (2021). Anthelmintic resistance and its mechanism: a review. Infection and Drug Resistance, 54035410. doi: 10.2147/IDR.S332378CrossRefGoogle Scholar
Garcia, C., Sprenger, L.K., Ortiz, E.B., and Molento, M.B. First report of multiple anthelmintic resistance in nematodes of sheep in Colombia. Annals of the Brazilian Academy of Sciences, 88(1), 397402. 2016. doi: 10.1590/0001-3765201620140360.CrossRefGoogle ScholarPubMed
Germer, S., Holland, M.J., and Higuchi, R. (2000) High-throughput SNP allele-frequency determination in pooled DNA samples by kinetic PCR. Genome Research 10, 258266. doi: 10.1101/gr.10.2.258CrossRefGoogle ScholarPubMed
Ghisi, M., Kaminsky, R., and Maser, P. (2007) Phenotyping and genotyping of Haemonchus contortus isolates reveal a new putative candidate mutation for benzimidazole resistance in nematodes. Veterinary Parasitology 144, 313320. doi: 10.1016/j.vetpar.2006.10.003.CrossRefGoogle ScholarPubMed
IBGE (2021a) Censo Agropecuário 2021. Retrieved from Instituto Brasileiro de Geografia e Estatistica website: https://sidra.ibge.gov.br/tabela/3939Google Scholar
IBGE (2021b) Cidades. Retrieved from Instituto Brasileiro de Geografia e Estatistica website: https://cidades.ibge.gov.br/ (accessed April 2023).Google Scholar
Kotze, A.C., Cowling, K., Bagnall, N.H., Hines, B.M., Ruffell, A.P., Hunt, P.W., and Coleman, G.T. (2012) Relative level of thiabendazole resistance associated with the E198A and F200Y SNPs in larvae of a multi-drug resistant isolate of Haemonchus contortus. International Journal for Parasitology: Drugs and Drug Resistance 2, 9297. doi: 10.1016/j.ijpddr.2012.02.003.Google ScholarPubMed
Kwa, M.S., Veenstra, J.G., and Roos, M.H. (1994) Benzimidazole resistance in Haemonchus contortus is correlated with a conserved mutation at amino acid 200 in β-tubulin isotype 1. Molecular and Biochemical Parasitology 63(2), 299303. doi: 10.1016/0166-6851(94)90066-3CrossRefGoogle ScholarPubMed
Lacey, E. (1988) The role of the cytoskeletal protein, tubulin, in the mode of action and mechanism of drug resistance to benzimidazoles. International Journal for Parasitology: Drugs and Drug Resistance 18, 885936. doi: 10.1016/0020-7519(88)90175-0.CrossRefGoogle ScholarPubMed
Lambert, S.M., Nishi, S.M., Mendonça, L.R., Souza, B.M.P.S., Julião, F.S., Gusmão, P.S., and Almeida, M.A.O. (2017) Genotypic profile of benzimidazole resistance associated with SNP F167Y and F200Y beta-tubulin gene in Brazilian populations of Haemonchus contortus of goats. Veterinary Parasitology: Regional Studies and Reports 8, 2834. doi: 10.1016/j.vprsr.2017.01.006.Google ScholarPubMed
Leathwick, D.M., Hosking, B.C., Bisset, S.A., and Mckay, C.H. (2009) Managing anthelmintic resistance: is it feasible in New Zealand to delay the emergence of resistance to a new anthelmintic class? New Zealand Veterinary Journal 57, 181192. doi: 10.1080/00480169.2009.36900.CrossRefGoogle ScholarPubMed
Molento, M.B., van Wyk, J.A., and Coles, G.C. Sustainable worm management. The Veterinary Record 155(3), 9596. 2004. PMID: 15311810Google ScholarPubMed
Mottier, M.D.L. and Prichard, R.K. (2008) Genetic analysis of a relationship between macrocyclic lactone and benzimidazole anthelmintic selection on Haemonchus contortus. Pharmacogenetics and Genomics 18, 129140. doi: 10.1097/FPC.0b013e3282f4711d.CrossRefGoogle Scholar
Niciura, S.C.M., Veríssimo, C.J., Gromboni, J.G.G., Rocha, M.I.P., Mello, S.S., Barbosa, C.M.P., Chiebao, D.P., Cardoso, D., Silva, G.S., Otsuk, I.P., Pereira, J.R., Ambrosio, L.A., Nardon, R.F., Ueno, T.E.H., and Molento, M.B. (2012) F200Y polymorphism in the β-tubulin gene in field isolates of Haemonchus contortus and risk factors of sheep flock management practices related to anthelmintic resistance. Veterinary Parasitology 190, 608612. doi: 10.1016/j.vetpar.2012.07.016.CrossRefGoogle ScholarPubMed
Nunes, R.L., Santos, L.L., Bastianetto, E., Oliveira, D.A.A., and Brasil, B.S.A.F. (2013) Frequency of benzimidazole resistance in Haemonchus contortus populations isolated from buffalo, goat and sheep herds. Revista Brasileira de Parasitologia Veterinária 22, 548553. Doi: 10.1590/S1984-29612013000400015.CrossRefGoogle ScholarPubMed
Odoi, A., Gathuma, J.M., Gachuiri, C.K., and Omore, A. (2007) Risk factors of gastrointestinal nematode parasite infections in small ruminants kept in smallholder mixed farms in Kenya. BMC Veterinary Research 3, 111. doi: 10.1186/1746-6148-3-6.CrossRefGoogle ScholarPubMed
Parvin, S., Dey, A.R., Shohana, N.N., Anisuzzaman, Talukder Md.H and Alam, M.Z. (2024) Haemonchus contortus, an obligatory haematophagus worm infection in small ruminants: Population genetics and genetic diversity. Saudi Journal of Biological Sciences 31, 104030. https://doi.org/10.1016/j.sjbs.2024.104030CrossRefGoogle ScholarPubMed
Reynecke, D.P., van Wyk, J.A., Gummow, B., Dorny, P., and Boomker, J. (2011) A stochastic model accommodating the FAMACHA system for estimating worm burdens and associated risk factors in sheep naturally infected with Haemonchus contortus. Veterinary Parasitology 177, 231241. doi: 10.1016/j.vetpar.2011.01.042.CrossRefGoogle ScholarPubMed
Roberts, F.H.S. and O’Sullivan, P.J. (1950) Methods for egg counts and larval cultures for strongyles infesting the gastrointestinal tract of cattle. Australian Journal of Agricultural Research 1, 99102. doi: 10.1071/AR9500099.CrossRefGoogle Scholar
Santos, J.M.L., Monteiro, J.P., Ribeiro, W.L.C., Macedo, I.T.F., Camurca-Vasconcelos, A.L., Vieira, L.S., and Bevilaqua, C.M.L. (2014) Identification and quantification of benzimidazole resistance polymorphisms in Haemonchus contortus isolated in Northeastern Brazil. Veterinary Parasitology 199, 160164. doi: 10.1016/j.vetpar.2013.11.006.CrossRefGoogle ScholarPubMed
Santos, J.M.L., Vasconcelos, J.F., Frota, G.A., Ribeiro, W.L.C., André, W.P.P., Vieria, L.S., Teixeira, M., Bevilaqua, M.L., and Monteiro, J.P. (2017a) Haemonchus contortus β-tubulin isotype 1 gene F200Y and F167Y SNPs are both selected by ivermectin and oxfendazole treatments with differing impacts on anthelmintic resistance. Veterinary Parasitology 248, 9095. doi: 10.1016/j.vetpar.2017.11.003.CrossRefGoogle ScholarPubMed
Santos, J.M.L., Monteiro, J.P., Ribeiro, W.L.C., Macedo, I.T.F., Araújo-Filho, J.V., Andre, W.P.P., Araújo, P.R.M., Vasconcelos, J.F., Freitas, E.P., Camurça-Vasconcelos, A.L.F., Vieira, L.S., and Bevilaqua, C.M.L. (2017b) High levels of benzimidazole resistance and β-tubulin isotype 1 SNP F167Y in Haemonchus contortus populations from Ceará State Brazil. Small Ruminant Research 146, 4852. Doi: 10.1016/j.smallrumres.2016.11.023.CrossRefGoogle Scholar
Silvestre, A. and Cabaret, J. (2002) Mutation in position 167 of isotype 1 β-tubulin gene of Trichostrongylid nematodes: role in benzimidazole resistance?. Molecular and Biochemical Parasitology 120(2), 297300. doi: 10.1016/s0166-6851(01)00455-8CrossRefGoogle ScholarPubMed
Thomaz-Soccol, V., Sotomaior, C., Souza, F.P., Castro, E.A., Pessôa Silva, M.C., and Milezewski, V. (1996) Occurrence of resistance to anthelmintics in sheep in Paraná State, Brazil. Veterinary Record 139, 421422. doi: 10.1136/vr.139.17.421.CrossRefGoogle Scholar
Thomaz-Soccol, V., Souza, F.P., Sotomaior, C., Castro, E.A., Milczewski, V., Mocelin, G., and Pessôa Silva, M.C. (2004) Resistance of gastrointestinal nematodes to anthelmintics in sheep (Ovis aries). Brazilian Archives of Biology and Technology 47, 4147. doi: 10.1590/S1516-89132004000100006.CrossRefGoogle Scholar
Van Wyk, J.A. and Mayhew, E. (2013) Morphological identification of parasitic nematode infective larvae of small ruminants and cattle: a practical lab guide. Onderstepoort Journal of Veterinary Research 80, 114. doi: 10.4102/ojvr.v80i1.539.CrossRefGoogle ScholarPubMed
Veríssimo, C.J., Niciura, S.C.M., Alberti, A.L.L., Rodrigues, C.F.C., Barbosa, C.M.P., Chiebao, D.P., Cardoso, D., Silva, G.S., Pereira, J.R., Margatho, L.F.F., Costa, R.L.D., Nardon, R.F., Ueno, T.E.H., Curci, V.C.L.M., and Molento, M.B. (2012) Multidrug and multispecies resistance in sheep flocks from São Paulo state, Brazil. Veterinary Parasitology 187, 209216. doi: 10.1016/j.vetpar.2012.01.013.CrossRefGoogle ScholarPubMed
Vilela, V.L.R., Bezerra, H.M.F.F., Bezerra, R.A., Dantas, M.O., Alcântara, E.T., Oliveira, L.V.S., Nóbrega, K.S., Calazans, F.B., Feitosa, T.F., Braga, F.R., and Molento, M.B. Sustainable agriculture: the use of FAMACHA method in Santa Ines sheep in the Semi-arid region of Brazil. Semina 42(3), S1, 16471662, 2021. DOI: 10.5433/1679-0359.2021v42n3Supl1p1647Google Scholar
Workentine, M. L., Chen, R., Zhu, S., Gavriliuc, S., Shaw, N., Rijke, J. D., Redman, E. M., Avramenko, R. W., Wit, J., Poissant, J., and Gilleard, J. S. (2020). A database for ITS2 sequences from nematodes. BMC Genetics 21(1), 14. doi: 10.1186/s12863-020-00880-0.CrossRefGoogle ScholarPubMed
Zajac, A.M. and Garza, J. (2020) Biology, epidemiology, and control of gastrointestinal nematodes of small ruminants. Veterinary Clinics of North America: Food Animal Practice 36(1), 7387. doi: 10.1016/j.cvfa.2019.12005.Google ScholarPubMed
Zhang, Z., Gasser, R.B., Yang, X., Yin, F., Zhao, G., Bao, M., Pan, B., Huang, W., Wang, C., Zou, F., Zhou, Y., Zhao, J., Fang, R., and Hu, M. (2016) Two benzimidazole resistance-associated SNPs in the isotype-1 β-tubulin gene predominate in Haemonchus contortus populations from eight regions in China. International Journal for Parasitology. Drugs Drug Resistance 6(3), 199206. doi: 10.1016/j.ijpddr.2016.10.001.CrossRefGoogle ScholarPubMed