Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T00:42:05.194Z Has data issue: false hasContentIssue false

Halloysite-Kaolinite Transformation at Room Temperature

Published online by Cambridge University Press:  01 July 2024

A. La Iglesia
Affiliation:
Departamento de Cristalografia y Mineralogia, Facultad de Ciencias, Universidad Complutense de Madrid and Sección de Mineralogia del Instituto ‘Lucas Mallada’, C.S.I.C., Madrid, Spain
E. Galan
Affiliation:
Departamento de Cristalografia y Mineralogia, Facultad de Ciencias, Universidad Complutense de Madrid and Sección de Mineralogia del Instituto ‘Lucas Mallada’, C.S.I.C., Madrid, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Halloysite (metahalloysite) of various particle sizes has been altered with oxalic and EDTA acids, at room temperature and during different periods of time (5–90 days). The oxalic acid attack at first achieved only a recrystallization of halloysite. The recrystallization is much more significant the smaller the size of the treated halloysite particles. Later the material is destroyed. The EDTA treatment also has provoked during the first days a recrystallization of the halloysitic material which is destroyed again after about 20–25 days. Later kaolinite is formed. The kinetic curve of kaolinite formation is symmetrical with respect to that corresponding to the diminution of amorphous material in the sample. The influence of the halloysite particle size and the complexing effect of the acids in relation to the resulting products are discussed.

Type
Research Article
Copyright
Copyright © 1975, The Clay Minerals Society

References

Brindley, G. W. and Robinson, K., (1948) Structure of meta halloysite Miner. Mag. 28 393406.Google Scholar
Chen, P. Y., (1969) Occurrence and genesis of kaolin minerals from Taiwan (I). Kaolinite, halloysite and allo-phane Proc. Geol. Soc. China 12 3048.Google Scholar
Dennfeld, F. Siffert, B. and Wey, R., (1970) Etude de l’influence des complexants de l’aluminium et du broyage des hydroxides d’aluminum sur la formation hydrothermale de la kaolinite Bull. Groupe Franc. Argiles XXII 179190.CrossRefGoogle Scholar
Fieldes, M., (1955) Clay mineralogy of New Zealand soils —II: Allophane and related mineral colloids N.Z. J. Sci. Technol. 37 336350.Google Scholar
Galan, E. and Martin Pozas, J. M., (1971) Mineralogia de los caolines de La Guardia y El Rosal (Pontevedra, España) Est. Geol. 27 7580.Google Scholar
Galan, E., (1972) Caolines españoles. Geologia, mineralogia y genesis Spain Sciences Faculty, University of Madrid.Google Scholar
Galan, E. and Martin Vivaldi, J. L., (1973) Caolines españoles. Geologia, mineralogia y genesis—III: Clasificación de los depósitos de caolines españoles segun su ambiente genetico Bol. Soc. Esp. Ceram. y Vidrio. 12 6 333340.Google Scholar
Herri, J. D. Roberson, C. E. Lind, C. J. and Polzer, W. L., (1973) Chemical interactions of aluminum with aqueous silica at 25°C Geol. Survey Water-supply Paper, 1827-E 57.Google Scholar
Keller, W. D. (1964) Processes of origin and alteration of clay minerals. Soil Clay Mineralogy (Edited by Rich, and Kunze, ) , pp. 375. The University of North Carolina Press, Durham, North Carolina.Google Scholar
Kinoshita, K. and Muchi, M., (1954) Bauxitic clay derived from volcanic ash Kyushukozan-gakkai 22 279291.Google Scholar
Klug, H. P. and Alexander, L. E., (1954) X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials New York Wiley.Google Scholar
La Iglesia, A. and Martin Vivaldi, J. L., (1974) Synthesis of kaolinite by homogeneous precipitation at room temperature (I). Against anionic resins in (OH) form 2nd Meeting of the European Clay Groups, Strasbourg .Google Scholar
Martin Pozas, J. M. Galan, E. and Martin Vivaldi, J. L., (1971) Il giacimento di caolino di Jove (Lugo, España) Atti. 1° Congresso Naz. Grup. Ital. 89109.Google Scholar
Ponder, A. and Keller, W. D., (1960) Geology, mineralogy and genesis of selected fire-clays from Latah Country, Idaho Clays and Clay Min. 8th Conf. Oxford Perga-mon Press 4463.CrossRefGoogle Scholar
Sudo, T. and Takahashi, H., (1956) Shapes of halloysite particles in Japanese clays Clays and Clay Min. 4th Conf. Nat. Acad. Sci. 6779.Google Scholar
Tamura, T. and Jackson, M. L., (1953) Structural and energy relationships in the formation of iron and aluminium oxides, hydroxides and silicates Science 117 381383.10.1126/science.117.3041.381CrossRefGoogle ScholarPubMed