Hostname: page-component-669899f699-tpknm Total loading time: 0 Render date: 2025-04-30T20:27:53.920Z Has data issue: false hasContentIssue false

Impact of wheat-Agropyron germplasm on the improvement of grain weight and size: a comprehensive QTL analysis

Published online by Cambridge University Press:  26 December 2024

Jiansheng Wang*
Affiliation:
College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, Henan, China Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China
Shiping Cheng
Affiliation:
College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, Henan, China Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China
Erwei Wang
Affiliation:
Pingdingshan Academy of Agricultural Science, Pingdingshan, Henan, China
Aichu Ma
Affiliation:
Pingdingshan Academy of Agricultural Science, Pingdingshan, Henan, China
Guiling Hou
Affiliation:
College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, Henan, China Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China
*
Corresponding author: Jiansheng Wang; Email: [email protected]

Abstract

Grain weight and size significantly influence wheat yield and quality. This study aimed to dissect the genetic basis of quantitative trait loci (QTL) associated with grain weight and size in hexaploid wheat (Triticum aestivum L.) using the novel wheat-Agropyron germplasm Pubing3228. A population of 210 F8 recombinant inbred lines derived from Pubing3228 and Jing4839 was evaluated across multiple environments for grain length, width, thickness and thousand-grain weight (TGW). Genotyping was conducted using the Illumina Infinium iSelect 55 K SNP chip, followed by QTL mapping with QTL IciMapping software. A total of 114 QTLs were identified across 20 wheat chromosomes, highlighting major QTLs for grain length, width/thickness and TGW. Candidate gene analysis revealed 22 genes expressed in grains, including those specifically associated with TGW, grain width/thickness and grain length. These findings enhance our understanding of the genetic mechanisms underlying wheat grain traits, providing insights for marker-assisted selection in wheat breeding programmes.

Type
Crops and Soils Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adhikari, L, Raupp, J, Wu, S, Wilson, D, Evers, B, Koo, DH, Singh, N, Friebe, B and Poland, J (2022) Genetic characterization and curation of diploid A-genome wheat species. Plant Physiology 188, 21012114. https://doi.org/10.1093/plphys/kiac006CrossRefGoogle ScholarPubMed
Anum, J, O'Shea, C, Zeeshan Hyder, M, Farrukh, S, Skriver, K, Malik, SI and Yasmin, T (2022) Germin like protein genes exhibit modular expression during salt and drought stress in elite rice cultivars. Molecular Biology Reports 49, 293302. https://doi.org/10.1007/s11033-021-06871-3CrossRefGoogle ScholarPubMed
Corpas, FJ, Aguayo-Trinidad, S, Ogawa, T, Yoshimura, K and Shigeoka, S (2016) Activation of NADPH-recycling systems in leaves and roots of Arabidopsis thaliana under arsenic-induced stress conditions is accelerated by knock-out of Nudix hydrolase 19 (AtNUDX19) gene. Journal of Plant Physiology 192, 8189. https://doi.org/10.1016/j.jplph.2016.01.010CrossRefGoogle Scholar
Dong, Y, Xu, D, Xu, X, Ren, Y, Gao, F, Song, J, Jia, A, Hao, Y, He, Z and Xia, X (2022) Fine mapping of QPm.caas-3BS, a stable QTL for adult-plant resistance to powdery mildew in wheat (Triticum aestivum L.). TAG. Theoretical and Applied Genetics. Theoretische und Angewandte Genetik 135, 10831099. https://doi.org/10.1007/s00122-021-04019-2CrossRefGoogle Scholar
Fallahi, M, Crosthwait, J, Calixte, S and Bonen, L (2005) Fate of mitochondrially located S19 ribosomal protein genes after transfer of a functional copy to the nucleus in cereals. Molecular Genetics and Genomics 273, 7683. https://doi.org/10.1007/s00438-004-1102-9CrossRefGoogle Scholar
Fu, G, Chen, B, Pei, X, Wang, X, Wang, X, Nazir, MF, Wang, J, Zhang, X, Xing, A, Pan, Z, Lin, Z, Peng, Z, He, S and Du, X (2023) Genome-wide analysis of the serine carboxypeptidase-like protein family reveals Ga09G1039 is involved in fiber elongation in cotton. Plant Physiology and Biochemistry 201, 107759. https://doi.org/10.1016/j.plaphy.2023.107759CrossRefGoogle ScholarPubMed
Gao, Y, An, K, Guo, W, Chen, Y, Zhang, R, Zhang, X, Chang, S, Rossi, V, Jin, F, Cao, X, Xin, M, Peng, H, Hu, Z, Guo, W, Du, J, Ni, Z, Sun, Q and Yao, Y (2021) The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality. The Plant Cell 33, 603622. https://doi.org/10.1093/plcell/koaa040CrossRefGoogle ScholarPubMed
Guo, X, Huang, Y, Wang, J, Fu, S, Wang, C, Wang, M, Zhou, C, Hu, X, Wang, T, Yang, W and Han, F (2023) Development and cytological characterization of wheat-Thinopyrum intermedium translocation lines with novel stripe rust resistance gene. Frontiers in Plant Science 14, 1135321. https://doi.org/10.3389/fpls.2023.1135321CrossRefGoogle ScholarPubMed
He, ZD, Tao, ML, Leung, DWM, Yan, XY, Chen, L, Peng, XX and Liu, EE (2021) The rice Germin-like protein OsGLP1 participates in acclimation to UV-B radiation. Plant Physiology 186, 12541268. https://doi.org/10.1093/plphys/kiab125CrossRefGoogle ScholarPubMed
Jin, HY, Yue, JQ, Yan, YQ, Zhang, DQ, Yang, C, Li, XD, Shao, YH and Fang, BT (2022) [Soil bacterial communities of different crop rotations and yield of succeeding wheat.]. Ying Yong Sheng Tai Xue Bao = The Journal of Applied Ecology 33, 29542962. https://doi.org/10.13287/j.1001-9332.202211.013Google ScholarPubMed
Kumar, V, Singh, V, Flessner, ML, Haymaker, J, Reiter, MS and Mirsky, SB (2023) Cover crop termination options and application of remote sensing for evaluating termination efficiency. PLoS ONE 18, e0284529. https://doi.org/10.1371/journal.pone.0284529CrossRefGoogle ScholarPubMed
Lao, J, Oikawa, A, Bromley, JR, McInerney, P, Suttangkakul, A, Smith-Moritz, AM, Plahar, H, Chiu, TY, González Fernández-Niño, SM, Ebert, B, Yang, F, Christiansen, KM, Hansen, SF, Stonebloom, S, Adams, PD, Ronald, PC, Hillson, NJ, Hadi, MZ, Vega-Sánchez, ME, Loqué, D, Scheller, HV and Heazlewood, JL (2014) The plant glycosyltransferase clone collection for functional genomics. The Plant Journal: for Cell and Molecular Biology 79, 517529. https://doi.org/10.1111/tpj.12577CrossRefGoogle ScholarPubMed
Li, L, Li, Y, Wang, NN, Li, Y, Lu, R and Li, XB (2015) Cotton LIM domain-containing protein GhPLIM1 is specifically expressed in anthers and participates in modulating F-actin. Plant Biology 17, 528534. https://doi.org/10.1111/plb.12243CrossRefGoogle ScholarPubMed
Li, P, Li, YJ, Wang, B, Yu, HM, Li, Q and Hou, BK (2017) The Arabidopsis UGT87A2, a stress-inducible family 1 glycosyltransferase, is involved in the plant adaptation to abiotic stresses. Physiologia Plantarum 159, 416432. https://doi.org/10.1111/ppl.12520CrossRefGoogle ScholarPubMed
Li, Q, Yu, HM, Meng, XF, Lin, JS, Li, YJ and Hou, BK (2018) Ectopic expression of glycosyltransferase UGT76E11 increases flavonoid accumulation and enhances abiotic stress tolerance in Arabidopsis. Plant Biology 20, 1019. https://doi.org/10.1111/plb.12627CrossRefGoogle ScholarPubMed
Li, Y, Xiong, H, Guo, H, Zhou, C, Xie, Y, Zhao, L, Gu, J, Zhao, S, Ding, Y and Liu, L (2020) Identification of the vernalization gene VRN-B1 responsible for heading date variation by QTL mapping using a RIL population in wheat. BMC Plant Biology 20, 331. https://doi.org/10.1186/s12870-020-02539-5CrossRefGoogle ScholarPubMed
Li, C, Li, K, Zheng, M, Liu, X, Ding, X, Gai, J and Yang, S (2021) Gm6PGDH1, a cytosolic 6-phosphogluconate dehydrogenase, enhanced tolerance to phosphate starvation by improving root system development and modifying the antioxidant system in soybean. Frontiers in Plant Science 12, 704983. https://doi.org/10.3389/fpls.2021.704983CrossRefGoogle ScholarPubMed
Liu, K, Wang, X, Liu, H, Wu, J, Liang, F, Li, S, Zhang, J and Peng, X (2022) OsAT1, an anion transporter, negatively regulates grain size and yield in rice. Physiologia Plantarum 174, e13692. https://doi.org/10.1111/ppl.13692CrossRefGoogle ScholarPubMed
Lopes, MS, El-Basyoni, I, Baenziger, PS, Singh, S, Royo, C, Ozbek, K, Aktas, H, Ozer, E, Ozdemir, F, Manickavelu, A, Ban, T and Vikram, P (2015) Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. Journal of Experimental Botany 66, 34773486. https://doi.org/10.1093/jxb/erv122CrossRefGoogle ScholarPubMed
Lopez, I, Anthony, RG, Maciver, SK, Jiang, CJ, Khan, S, Weeds, AG and Hussey, PJ (1996) Pollen specific expression of maize genes encoding actin depolymerizing factor-like proteins. Proceedings of the National Academy of Sciences of the USA 93, 74157420. https://doi.org/10.1073/pnas.93.14.7415CrossRefGoogle ScholarPubMed
Mao, H, Jiang, C, Tang, C, Nie, X, Du, L, Liu, Y, Cheng, P, Wu, Y, Liu, H, Kang, Z and Wang, X (2023) Wheat adaptation to environmental stresses under climate change: molecular basis and genetic improvement. Molecular Plant 16, 15641589. https://doi.org/10.1016/j.molp.2023.09.001CrossRefGoogle ScholarPubMed
Muellner, AE, Buerstmayr, M, Eshonkulov, B, Hole, D, Michel, S, Hagenguth, JF, Pachler, B, Pernold, R and Buerstmayr, H (2021) Comparative mapping and validation of multiple disease resistance QTL for simultaneously controlling common and dwarf bunt in bread wheat. Theoretical and Applied Genetics. Theoretische und Angewandte Genetik 134, 489503. https://doi.org/10.1007/s00122-020-03708-8CrossRefGoogle ScholarPubMed
Papuga, J, Hoffmann, C, Dieterle, M, Moes, D, Moreau, F, Tholl, S, Steinmetz, A and Thomas, C (2010) Arabidopsis LIM proteins: a family of actin bundlers with distinct expression patterns and modes of regulation. The Plant Cell 22, 30343052. https://doi.org/10.1105/tpc.110.075960CrossRefGoogle ScholarPubMed
Park, JR, Resolus, D and Kim, KM (2021) OsBRKq1, related grain size mapping, and identification of grain shape based on QTL mapping in rice. International Journal of Molecular Sciences 22, 2289. https://doi.org/10.3390/ijms22052289CrossRefGoogle ScholarPubMed
Patwa, N and Penning, BW (2023) Genetics of a diverse soft winter wheat population for pre-harvest sprouting, agronomic, and flour quality traits. Frontiers in Plant Science 14, 1137808. https://doi.org/10.3389/fpls.2023.1137808CrossRefGoogle ScholarPubMed
Qiu, B, Hu, X, Chen, C, Tang, Z, Yang, P, Zhu, X, Yan, C and Jian, Z (2022) Maps of cropping patterns in China during 2015–2021. Scientific Data 9, 479. https://doi.org/10.1038/s41597-022-01589-8CrossRefGoogle Scholar
Qu, X, Li, C, Liu, H, Liu, J, Luo, W, Xu, Q, Tang, H, Mu, Y, Deng, M, Pu, Z, Ma, J, Jiang, Q, Chen, G, Qi, P, Jiang, Y, Wei, Y, Zheng, Y, Lan, X and Ma, J (2022) Quick mapping and characterization of a co-located kernel length and thousand-kernel weight-related QTL in wheat. Theoretical and Applied Genetics. Theoretische und Angewandte Genetik 135, 28492860. https://doi.org/10.1007/s00122-022-04154-4CrossRefGoogle ScholarPubMed
Raj, SRG and Nadarajah, K (2022) QTL and candidate genes: techniques and advancement in abiotic stress resistance breeding of major cereals. International Journal of Molecular Sciences 24, 6. https://doi.org/10.3390/ijms24010006CrossRefGoogle ScholarPubMed
Reynolds, MP, Lewis, JM, Ammar, K, Basnet, BR, Crespo-Herrera, L, Crossa, J, Dhugga, KS, Dreisigacker, S, Juliana, P, Karwat, H, Kishii, M, Krause, MR, Langridge, P, Lashkari, A, Mondal, S, Payne, T, Pequeno, D, Pinto, F, Sansaloni, C, Schulthess, U, Singh, RP, Sonder, K, Sukumaran, S, Xiong, W and Braun, HJ (2021) Harnessing translational research in wheat for climate resilience. Journal of Experimental Botany 72, 51345157. https://doi.org/10.1093/jxb/erab256CrossRefGoogle ScholarPubMed
Rosewarne, GM, Herrera-Foessel, SA, Singh, RP, Huerta-Espino, J, Lan, CX and He, ZH (2013) Quantitative trait loci of stripe rust resistance in wheat. Theoretical and Applied Genetics. Theoretische und Angewandte Genetik 126, 24272449. https://doi.org/10.1007/s00122-013-2159-9CrossRefGoogle ScholarPubMed
Satyavathi, CT, Ambawat, S, Khandelwal, V and Srivastava, RK (2021) Pearl millet: a climate-resilient nutricereal for mitigating hidden hunger and provide nutritional security. Frontiers in Plant Science 12, 659938. https://doi.org/10.3389/fpls.2021.659938CrossRefGoogle ScholarPubMed
Senatore, MT, Ward, TJ, Cappelletti, E, Beccari, G, McCormick, SP, Busman, M, Laraba, I, O'Donnell, K and Prodi, A (2021) Species diversity and mycotoxin production by members of the Fusarium tricinctum species complex associated with Fusarium head blight of wheat and barley in Italy. International Journal of Food Microbiology 358, 109298. https://doi.org/10.1016/j.ijfoodmicro.2021.109298CrossRefGoogle ScholarPubMed
Sharma, D, Kumari, A, Sharma, P, Singh, A, Sharma, A, Mir, ZA, Kumar, U, Jan, S, Parthiban, M, Mir, RR, Bhati, P, Pradhan, AK, Yadav, A, Mishra, DC, Budhlakoti, N, Yadav, MC, Gaikwad, KB, Singh, AK, Singh, GP and Kumar, S (2023) Meta-QTL analysis in wheat: progress, challenges and opportunities. Theoretical and Applied Genetics. Theoretische und Angewandte Genetik 136, 247. https://doi.org/10.1007/s00122-023-04490-zCrossRefGoogle ScholarPubMed
Sun, H, Ma, J and Wang, L (2023) Changes in per capita wheat production in China in the context of climate change and population growth. Food Security 15, 597612. https://doi.org/10.1007/s12571-023-01351-xCrossRefGoogle Scholar
To, HTM, Pham, DT, Le Thi, VA, Nguyen, TT, Tran, TA, Ta, AS, Chu, HH and Do, PT (2022) The Germin-like protein OsGER4 is involved in promoting crown root development under exogenous Jasmonic acid treatment in rice. The Plant Journal: for Cell and Molecular Biology 112, 860874. https://doi.org/10.1111/tpj.15987CrossRefGoogle ScholarPubMed
Tong, J, Sun, M, Wang, Y, Zhang, Y, Rasheed, A, Li, M, Xia, X, He, Z and Hao, Y (2020) Dissection of molecular processes and genetic architecture underlying iron and zinc homeostasis for biofortification: from model plants to common wheat. International Journal of Molecular Sciences 21, 9280. https://doi.org/10.3390/ijms21239280CrossRefGoogle ScholarPubMed
Tong, HW, Zhu, ZW, Liu, YK, Chen, L, Zou, J, Zhang, YQ, Yang, Y and Gao, CB (2021) Effects of three fertilizer application patterns on wheat sowed by machinery in slope cropland of Western Hubei, China. Ying Yong Sheng Tai Xue Bao = The Journal of Applied Ecology 32, 39693976. https://doi.org/10.13287/j.1001-9332.202111.027Google ScholarPubMed
Wang, K, Shi, L, Liang, X, Zhao, P, Wang, W, Liu, J, Chang, Y, Hiei, Y, Yanagihara, C, Du, L, Ishida, Y and Ye, X (2022) The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nature Plants 8, 110117. https://doi.org/10.1038/s41477-021-01085-8CrossRefGoogle ScholarPubMed
Wei, J, Fang, Y, Jiang, H, Wu, XT, Zuo, JH, Xia, XC, Li, JQ, Stich, B, Cao, H and Liu, YX (2022) Combining QTL mapping and gene co-expression network analysis for prediction of candidate genes and molecular network related to yield in wheat. BMC Plant Biology 22, 288. https://doi.org/10.1186/s12870-022-03677-8CrossRefGoogle ScholarPubMed
Xu, J, Hu, P, Tao, Y, Song, P, Gao, H and Guan, Y (2021) Genome-wide identification and characterization of the lateral organ boundaries domain (LBD) gene family in polyploid wheat and related species. PeerJ 9, e11811. https://doi.org/10.7717/peerj.11811CrossRefGoogle ScholarPubMed
Xu, YF, Ma, FF, Zhang, JP, Liu, H, Li, LH and An, DG (2023) Unraveling the genetic basis of grain number-related traits in a wheat-Agropyron cristatum introgressed line through high-resolution linkage mapping. BMC Plant Biology 23, 563. https://doi.org/10.1186/s12870-023-04547-7CrossRefGoogle Scholar
Yang, G, Boshoff, WHP, Li, H, Pretorius, ZA, Luo, Q, Li, B, Li, Z and Zheng, Q (2021) Chromosomal composition analysis and molecular marker development for the novel Ug99-resistant wheat-Thinopyrum ponticum translocation line WTT34. Theoretical and Applied Genetics. Theoretische und Angewandte Genetik 134, 15871599. https://doi.org/10.1007/s00122-021-03796-0CrossRefGoogle ScholarPubMed
Yu, H, Hao, Y, Li, M, Dong, L, Che, N, Wang, L, Song, S, Liu, Y, Kong, L and Shi, S (2022 a) Genetic architecture and candidate gene identification for grain size in bread wheat by GWAS. Frontiers in Plant Science 13, 1072904. https://doi.org/10.3389/fpls.2022.1072904CrossRefGoogle ScholarPubMed
Yu, M, Yu, Y, Guo, S, Zhang, M, Li, N, Zhang, S, Zhou, H, Wei, F, Song, T, Cheng, J, Fan, Q, Shi, C, Feng, W, Wang, Y, Xiang, J and Zhang, X (2022 b) Identification of TaBADH-A1 allele for improving drought resistance and salt tolerance in wheat (Triticum aestivum L.). Frontiers in Plant Science 13, 942359. https://doi.org/10.3389/fpls.2022.942359CrossRefGoogle ScholarPubMed
Zhang, Y, Li, A, Zhu, S, Li, L, He, X, Sun, Z and Li, T (2021) Basal rachis internode injection: a novel inoculation method to evaluate wheat resistance to fusarium head blight. Phytopathology 111, 16701674. https://doi.org/10.1094/PHYTO-11-20-0488-RCrossRefGoogle ScholarPubMed
Zhang, C, Xi, Y, Zhang, Y, He, P, Su, X, Fan, F, Wu, M, Kong, X and Shi, Y (2024) Genetic association analysis of dietary intake and idiopathic pulmonary fibrosis: a two-sample Mendelian randomization study. BMC Pulmonary Medicine 24, 15. https://doi.org/10.1186/s12890-023-02831-8CrossRefGoogle ScholarPubMed
Zhou, J, Li, C, You, J, Tang, H, Mu, Y, Jiang, Q, Liu, Y, Chen, G, Wang, J, Qi, P, Ma, J, Gao, Y, Habib, A, Wei, Y, Zheng, Y, Lan, X and Ma, J (2021) Genetic identification and characterization of chromosomal regions for kernel length and width increase from tetraploid wheat. BMC Genomics 22, 706. https://doi.org/10.1186/s12864-021-08024-zCrossRefGoogle ScholarPubMed
Supplementary material: File

Wang et al. supplementary material 1

Wang et al. supplementary material
Download Wang et al. supplementary material 1(File)
File 27.9 MB
Supplementary material: File

Wang et al. supplementary material 2

Wang et al. supplementary material
Download Wang et al. supplementary material 2(File)
File 13.8 KB
Supplementary material: File

Wang et al. supplementary material 3

Wang et al. supplementary material
Download Wang et al. supplementary material 3(File)
File 44.9 KB