Variables affecting the efficacy of seven juvenile hormone analogues on western spruce budworm, Choristoneura occidentalis Freeman, were examined in laboratory bioassays. Those tested were epofenonane, hydroprene, kinoprene, methoprene, triprene, ZR-587, and ZR-1662. Selected intrinsic variables—stage of development, sex, and extent of direct contact with sprays—were examined in bioassays involving direct exposure of third instars, direct applications to three pupal age classes, and indirect applications to sixth instars. An extrinsic variable, persistence in the environment, was assessed by determining the residual effectiveness of each juvenile hormone analogue to sixth instars. Sixth instars, rather than third instars, appeared to be the target of choice for two reasons. First, less active ingredient would be required for equivalent mortality by the time of adult eclosion. Second, greater, more consistent, deleterious reproductive effects coupled with a lower incidence of sexual variation in lethal effectiveness, would occur. Pharate pupae and untanned pupae were very susceptible to most of the chemicals and may provide a secondary target for the primary target, sixth instars. The importance of direct chemical-insect contact in achieving maximum reproductive inhibition suggests that these chemicals might be used most effectively in ways such that contact can be maximized, as in ground applications. Finally, some juvenile hormone analogues such as epofenonane and ZR-1662 appeared to persist long enough to permit flexibility with respect to instar distribution in a population.