1 Introduction
Keller–Segel system and fast signal diffusion limit. Chemotaxis, the biased movement of cells along spatial gradients of chemical cues, plays an important role in numerous biological circumstances such as bacterial aggregation, spatial pattern formation, embryonic morphogenesis, immune response and also tumour-induced angiogenesis. The most basic mathematical model for chemotaxis was originally derived in 1953 by Patlak [Reference Patlak25] and then in 1970 by Keller and Segel [Reference Keller and Segel13]. The main unknowns in this so-called Keller–Segel model are the nonnegative cell density n and chemical concentration c, which satisfy the parabolic–parabolic reaction-diffusion equations:

where
$\tau_1$
is the positive cell diffusivity and
$\tau_2$
stands for the positive diffusivity of the chemical. In many realistic modelling situations, the chemotactic sensitivity S has to be allowed to depend on the cell density n and on the chemical concentration c.
The celebrated Keller–Segel system (1.1) has been well-studied with regard to biological implications, but beyond this, during the last decades quite a thorough comprehension of its mathematical features has grown in various directions. For instance, a striking feature of system (1.1) appears to be the occurrence of some solutions blowing up in finite time ([Reference Herrero and Velázquez11]), which is commonly viewed as mathematically expressing numerous processes of spontaneous cell aggregation which can be observed in experiments. In the spatially two-dimensional framework, in particular, it was shown in [Reference Nagai, Senba and Yoshida24, Reference Herrero and Velázquez11] that system (1.1) possesses some solutions which blow up in finite time provided that the initially present total mass
$\int_{\Omega}n(x, 0)$
is large enough, whereas solutions remain bounded whenever
$\int_{\Omega}n(x, 0)$
is small; as a precise value distinguishing the respective mass regimes either allowing for or suppressing explosions, the critical mass
$m_c=8\pi$
could be identified in the spatially radial setting or
$\Omega=\mathbb{R}^2$
. Such explosion phenomena can be ruled out when S is related to the prototypical assumption of volume-filling effect. Precisely, it has been shown in [Reference Horstmann and Winkler12] that for the two-dimensional no-flux boundary value problem of system (1.1) with n-dependent sensitivities S(n), all solutions are global and uniformly bounded provided that

for some positive constant
$C_S$
, while the solution may blow up if
$\Omega \subset \mathbb{R}^2$
is a ball and

Due to the experimental facts, the diffusion coefficient
$\tau_2$
of the chemoattractant c is usually assumed to be large and the ratio between the diffusivity of the cells and of the chemoattractant

can be regarded as a relaxation time scale such that
$\epsilon^{-1}$
is the rate towards equilibrium. Then taking into account the different time scales of the two diffusion processes and replacing
$\tau_1 t$
with t in the original parabolic–parabolic (PP) system (1.1), we obtain

The formal choice
$\epsilon=0$
in (1.3) will lead to a corresponding parabolic–elliptic (PE) system:

which describes the chemical concentration evolution in a quasi-stationary approximation. The PE system substantially differs from its fully PP system due to the circumstance that the former cross-diffusive interaction involves a certain memory. The theory of the PE system (1.4) is relatively well developed. For instance, a comprehensive picture was obtained in [Reference Senba and Suzuki27] for the two-dimensional PE system (1.4): the Dirac mass formation and finiteness of blow-up points were derived without substantial restrictions. Even in the 2D mass critical case, in which solutions to the Cauchy problem of the minimal PE system (1.4) exist globally but blow up in infinite time, it is known that the spatial profile near the corresponding blow-up time
$T=\infty$
is essentially dictated by Dirac distributions (see [Reference Blanchet, Carrillo and Masmoudi3, Reference Ghoul and Masmoudi9]).
Several nice analytical results in [Reference Biler and Brandolese2, Reference Kurokiba and Ogawa17, Reference Lemarié-Rieusset18, Reference Raczynski26] showed the stability properties of solutions to Keller–Segel system in the whole space
$\mathbb{R}^2$
as
$\epsilon\to 0$
: solutions of the PP system (1.3) converge in some special cases (e.g. for
$c(x, 0)\equiv 0$
, for some finite time T or for small initial data) to those of the PE system (1.4) (see also [Reference Freitag8, Reference Mizukami23] for the initial-boundary value problem). These partially solved an old question raised by Biler [Reference Biler1]. Recently, Liu et al. [Reference Liu, Wang and Zhou20] proposed a semi-discrete scheme based on a symmetrisation reformation and showed that their new scheme is stable as
$\epsilon\to 0$
provided that the initial condition does not exceed certain threshold, and it asymptotically preserves the quasi-static limit in the transient regime.
Keller–Segel–(Navier–)Stokes system and fast signal diffusion limit. Partially motivated by the striking experiments in [Reference Tuval, Cisneros, Dombrowski, Wolgemuth, Kessler and Goldstein28], the typical models describing the interaction between populations of chemotactically migrating individuals and viscous fluid environments have become the best-studied models in mathematical biology (see [Reference Duan, Lorz and Markowich6, Reference Winkler36]). In [Reference Kiselev and Ryzhik14, Reference Kiselev and Ryzhik15], Kiselev and Ryzhik considered the effect chemotactic attraction on reproduction of some invertebrates, such as sea urchins, anemones and corals. In particular, they investigated the phenomenon of broadcast spawning whereby males and females release sperm and egg gametes into the surrounding flow. For the coral spawning problem, there is experimental evidence that eggs release a chemical that attracts sperm (see [Reference Coll, Bowden, Meehan, Konig, Carroll, Tapiolas, Alino, Heaton, de Nys, Leone, Maida, Aceret, Willis, Babcock, Willis, Florian, Clayton and Miller4, Reference Coll, Leone, Bowden, Carroll, Konig, Heaton, de Nys, Maida, Alino, Willis, Babcock, Florian, Clayton, Miller and Alderslade5]). This leads us to investigate the PP-fluid model:

and to consider the effect of the surrounding fluid on the chemotaxis, where the additional unknowns are the fluid velocity u and the associated pressure P. Here the given potential function
$\phi=\phi(x, t)$
arose from the chemotactic boycott effect and the coefficient
$\kappa\in \mathbb{R}$
measured the strength of nonlinear fluid convection.
Due to the possible singularity in the fluid-free case as mentioned before, it is natural to require a volume-filling hypothesis of the form (1.2) to establish global solvability for the PP-fluid system (1.5) and its variants (see [Reference Wang, Winkler and Xiang29, Reference Wang and Xiang34, Reference Winkler37, Reference Zheng41]). For
$\kappa=1$
, in particular, it has been revealed in [Reference Wang, Winkler and Xiang29] that under the rotational chemotactic assumption of the form
$S=S(x, n, c)$
(see [Reference Xue and Othmer39]) satisfying the natural volume-filling hypothesis

with some positive constant
$C_S$
, there exist global bounded classical solutions to the 2D homogeneous Neumann–Neumann–Dirichlet initial-boundary value problem of system (1.5) whenever
$\alpha>0$
, which is accurately consistent with the case of fluid-free system (1.1). A corresponding 3D setting possesses a globally defined weak solution whenever
$\alpha>\frac13$
(see [Reference Ke and Zheng16]). For
$\kappa=0$
, on the other hand, Lorz [Reference Lorz21] illustrated the behaviour of the 2D PE-fluid system

(i.e.
$\epsilon=0$
in (1.5)) with different numerical examples and in particular gave the numerical evidence that above the critical mass of
$8\pi$
solutions still exist for PE-fluid system (1.7). Recently, Zheng [Reference Zheng42] proved that if
$\alpha>0$
, then the associated initial-boundary-value problem (1.7) possesses a global bounded classical solution for any sufficiently smooth initial data
$(n_0, u_0)$
satisfying some compatibility conditions. The Dirichlet boundary effects for the signal have also been investigated in [Reference Wang, Winkler and Xiang31, Reference Wang, Winkler and Xiang32, Reference Wang, Winkler and Xiang33].
In the last 2 years, two rigorous stability analyses for the chemotaxis-fluid system have been done by [Reference Wang, Winkler and Xiang30, Reference Li and Xiang19]. In particular, Wang et al. [Reference Wang, Winkler and Xiang30] affirmed that under some assumptions on the model ingredients, that is,

with some
$\lambda\in (2,\infty]$
,
$q>d$
and
$r>\max\big\{2,d\big\}$
fulfilling
$\frac{1}{\lambda} + \frac{d}{2q} < \frac{1}{2}$
, there exists a subsequence for solutions
$(n_{\epsilon}, c_{\epsilon}, u_\epsilon)$
to the initial-boundary value problem of the fully PP-fluid system

converging to the solution of its PE-fluid counterpart

in
$\Omega\times(0, T)$
as
$\epsilon\to 0$
, where
$\kappa \in \mathbb{R}$
and
$\Omega\subset\mathbb R^d$
(
$d\ge1$
) is a smoothly bounded convex domain. Then under the volume-filling assumption (1.6) with
$\alpha>0$
, the first two authors [Reference Li and Xiang19] established an algebraic convergence rate of the fast signal diffusion limit for the PP-Stokes system (i.e.,
$\kappa=0$
in (1.8)) with
$f\equiv0$
and general large initial data and removed the restriction to asserting convergence only along some subsequence in [Reference Wang, Winkler and Xiang30].
Main results. In the present work, we will further consider the stability in a full Keller–Segel–Navier–Stokes system. Precisely, we investigate the convergence of solutions of the PP-fluid system

to the solution of the corresponding PE-fluid system

in a setting as general as possible, where
$\Omega\subset\mathbb{R}^2$
is a bounded domain with smooth boundary.
Throughout this paper, we will suppose that the chemotactic sensitivity function
$S=\big(S_{ij}\big)_{2\times 2}$
satisfies the requirements of regularity and the volume-filling hypothesis

for some constants
$C_S>0$
and
$\alpha>0$
, and that the initial data and the potential function fulfil

With the above framework, it was shown in [Reference Wang, Winkler and Xiang29] that for each fixed
$\epsilon>0$
, system (1.9) admits a unique global bounded classical solution
$(n_\epsilon,c_\epsilon,u_\epsilon,P_{\epsilon})$
satisfying
$n_{\epsilon}\geq0$
and
$c_{\epsilon}\geq0$
in
$\Omega\times(0,\infty)$
.
Our aim is threefold: firstly, we show the global classical solutions
$(n_\epsilon,c_\epsilon,u_\epsilon,P_{\epsilon})$
(not just a subsequence) of the full PP-fluid system (1.9) will converge to the solution (n, c, u, P) of the corresponding PE-fluid system (1.10) as
$\epsilon\to 0$
. As a by-product, we obtain the global well-posedness of the PE-fluid system (1.10) for general large initial data. Secondly, we establish exponential time decay estimates of
$(n_\epsilon,c_\epsilon,u_\epsilon)$
uniformly in
$\epsilon$
for small initial cell mass, which in particular ensure an improvement of convergence rate with at most
$\frac12$
-order growth on time t. Thirdly, we further investigate the convergence behaviour on
$\epsilon$
and t through the numerical simulations of three different types of solution: the nontrivial and constant equilibriums, and the rotating aggregation (see Remark 5.1 for discussion).
Without loss of generality, we only need to focus on the case of
$0<\alpha<\frac12$
. Under these assumptions, our main results are the following.
Theorem 1.1. Let
$\Omega\subset\mathbb{R}^2$
be a bounded domain with smooth boundary. Suppose that (1.11)–(1.12) hold for
$\alpha>0$
, and that
$(n_\epsilon,c_\epsilon,u_\epsilon,P_{\epsilon})$
solves the PP-fluid system (1.9) classically in
$\Omega\times(0,\infty)$
. Then there exists a unique classical solution (n, c, u, P) to the PE-fluid system (1.10) in
$\Omega\times(0,\infty)$
with the property that

for all
$t\in(0, \infty)$
and some uniform positive constant
$C_1$
. For each
$\theta\in\big(\frac12,\frac34\big)$
and
$p\ge 2$
, we also have

for all
$t\in(0, \infty)$
and some positive constants
$C_2:=C_2(\theta)$
and
$C_3:=C_3(p)$
.
Our second result further reveals that the above exponential growth in time t can be improved as at most
$\frac12$
-order growth for small initial cell mass based on some new exponential time decay estimates of
$(n_\epsilon,c_\epsilon,u_\epsilon)$
uniformly in
$\epsilon$
. For simplicity, we will set
$\overline{n}_0:=\frac{1}{|\Omega|}\int_{\Omega}n_0(x)dx$
.
Theorem 1.2. Under the assumptions of Theorem 1.1, there exists
$\delta>0$
such that if

then the solutions
$(n_{\epsilon}, c_{\epsilon}, u_\epsilon)$
to the PP-fluid system (1.9) satisfy the exponential time decay estimates uniformly in
$\epsilon$

for any
$p>1$
and all
$t\in(0, \infty)$
with some positive constants
$\mu$
and
$C_1$
. Moreover, there exists some uniform positive constant
$C_2$
with the property that

for all
$t\in(0, \infty)$
. Furthermore, for each
$\theta\in\big(\frac12, \frac34\big)$
and
$p>2$
, we have

and

for all
$t\in(0, \infty)$
with some positive constants
$C_3:=C_3(\theta)$
and
$C_4:=C_4(p)$
.
Remark 1.1. In the current two-dimensional setting, Theorem 1.2 also improved the decay estimates obtained by [Reference Yu, Wang and Zheng40] in the sense that we removed the smallness restriction on
$\|\nabla c_0\|_{L^2(\Omega)}$
and
$\|u_0\|_{L^2(\Omega)}$
.
Key steps in our analysis. In Section 3, we concentrate upon the global existence of classical solution (n, c, u, P) to the PE-fluid system (1.10) as a limit of some subsequence of solutions
$(n_\epsilon, c_\epsilon, u_\epsilon, P_{\epsilon})$
to the PP-fluid system (1.9). Thus, we need to derive some
$\epsilon$
-independent estimates for
$(n_\epsilon, c_\epsilon, u_\epsilon, P_{\epsilon})$
.
Unlike the PP-Stokes system studied in [Reference Li and Xiang19], the current mass conservation property
$\|n_{\epsilon}(\cdot, t)\|_{L^1(\Omega)} = \|n_0\|_{L^1(\Omega)} $
and the regularity of
$\|c_{\epsilon}(\cdot, t)\|_{L^1(\Omega)}$
(Lemma 2.1) cannot immediately provide the bounds for
$u_\epsilon$
due to the convective term in equation (1.9)
$_3$
. Instead, we will first analyse a combinational functional of the form

for some
$K>0$
to gain the uniform
$L^{2}$
space-time bounds for
$\nabla n_{\epsilon}^\alpha$
and
$\nabla c_{\epsilon}$
with respect to
$\epsilon$
(Lemma 3.1), which ensures the
$L^{2}$
spatial bound for
$u_\epsilon$
and the
$L^{2}$
space-time bound for
$\nabla u_\epsilon$
(Lemma 3.2). We next improve our knowledge on the space-time
$L^p$
uniform bound for
$c_{\epsilon}$
for any
$p\geq2$
(Lemma 3.3). Based on the above conclusions, we shall further establish the key
$L^2$
boundedness of
$\nabla u_\epsilon$
by an entropy-like estimate involving the combinational functional of the form

for some positive constants K and M (Lemma 3.4), which guarantees the time-independent spatial
$L^p$
uniform bound for
$u_\epsilon$
for any
$p>1$
with respect to
$\epsilon$
(Lemma 3.5). Thereafter, we will track the time evolution of the combinational functional

for some s in Lemma 3.6. Then following from an induction argument (Corollary 3.1), we reach the
$L^4$
regularity of
$n_{\epsilon}$
(Corollary 3.2), which together with the damping effect of
$c_{\epsilon}$
provides the uniform
$L^2$
bound (Lemma 3.7) and the eventual
$L^q$
bound for
$ \nabla c_{\epsilon}$
(Lemma 3.8). These bounds imply the convergence of some subsequence of
$(n_\epsilon, c_\epsilon, u_\epsilon, P_{\epsilon})$
(Lemma 3.9).
In Section 4, we shall first derive a linear growth estimate

for the mixed components
$c_{\epsilon}$
and c using some subtle difference quotient estimates and the maximal regularity for parabolic equations and Stokes equation (Lemma 4.1). Then the basic energy methods and the variation-of-constants representation provide the convergence rate for general large initial data (Lemma 4.2-Lemma 4.5). Then we show that the solution
$(n_{\epsilon}, c_{\epsilon}, u_\epsilon)$
of the PP-fluid system (1.9) exponentially decays to the constant steady state
$(\overline{n}_0, \overline{n}_0, 0)$
uniformly in
$\epsilon$
for appropriate small initial cell mass with
$\overline{n}_0:=\frac{1}{|\Omega|}\int_{\Omega}n_0(x)dx$
(Lemmas 4.6, 4.7, Corollary 4.1, Lemma 4.8), which ensures that we can improve the growth in time t as at most
$\frac12$
-order by investigating the time evolution of the mixed functional

for some
$K>0$
(Lemma 4.9). The standard smoothing effect of Stokes semigroup and some energy estimates also entail the higher convergence of
$u_\epsilon$
(Corollary 4.2 and Lemma 4.10) and
$n_\epsilon$
(Lemma 4.11).
Notation: In the rest of this paper, we will suppose that
$(n_{\epsilon},c_{\epsilon},u_\epsilon,P_{\epsilon})$
is a classical solution to the PP-fluid system (1.9) in
$\Omega\times(0,\infty)$
with
$\epsilon \in (0,1)$
. The positive constants
$C, C_1, C_2, \cdots$
are independent of
$\epsilon$
and t.
2. Preliminaries
In this section, we collected a few preliminaries. We begin with the mass conservation of cell density.
Lemma 2.1. Suppose that (1.11)–(1.12) hold. Then for all
$\epsilon\in(0, 1)$
,

and

Proof. The mass conversation (2.1) of
$n_\epsilon$
can be obtained by taking an integration of equation (1.9)
$_1$
over
$\Omega$
. Similarly, integrating equation (1.9)
$_2$
over
$\Omega$
and using a comparison argument, we can obtain the
$L^1$
boundedness (2.2) of
$c_\epsilon$
.
Lemma 2.2. Suppose that (1.11)–(1.12) hold and that
$\|n_{\epsilon}(\cdot,t)\|_{L^{s}(\Omega)}\le K$
,
$(t\in(0, \infty))$
, for some
$s>1$
and
$K>0$
. Then there exists a positive constant C depending only on s, K and
$c_0$
such that for all
$\epsilon\in(0,1)$
,

Proof. Multiplying equation (1.9)
$_2$
by
$c_{\epsilon}^{s-1}$
and integrating by parts over
$\Omega$
, we have

and thus

for all
$ t\in (0,\infty)$
. By a basic calculation, we deduce that

This completes the proof of Lemma 2.2.
Lemma 2.3. (Lemma 3.4 in [Reference Winkler38]) Let
$a>0,\, T>0$
and
$y\in C^0([0,T))\cap C^1(0,T)$
be such that

where the nonnegative function
$g\in L_{loc}^1(\mathbb{R})$
has the property that
$ \frac{1}{\tau}\int_{t}^{t+\tau}g(s)ds\leq b$
for all
$t\in (0,T)$
with some
$\tau>0$
and
$b>0$
. Then

3. Global existence of the PE-fluid system
In this section, we will establish the global existence of classical solution to the PE-fluid system (1.10) through a limit procedure in the PP-fluid system (1.9), which is highly nontrivial due to the loss of uniform parabolicity in
$c_{\epsilon}$
equation. Our key idea is to obtain some necessary spatio-temporal estimates using a series of subtle coupled functional evolution estimates and bootstrap arguments.
3.1 The space-time
$L^{2}$
bound for
$\nabla u_\epsilon$
and
$L^{p}$
bound for
$c_\epsilon$
Lemma 3.1. Suppose that (1.11)–(1.12) hold. Then there exists some positive constant C such that for all
$\epsilon\in(0,1)$
, we have

Proof. We first multiply equation (1.9)
$_1$
by
$n_{\epsilon}^{2\alpha-1}$
, integrate by parts over
$\Omega$
and use the solenoidality of
$u_\epsilon$
and the Young inequality to deduce that

for all
$t>0$
, where we also used the upper estimate (1.11) for S. To compensate the rightmost summand herein properly, we multiply equation (1.9)
$_2$
by
$c_{\epsilon}$
and utilise the solenoidality of
$u_\epsilon$
again to find that

For any fixed
$\theta\in\left(1,\frac{1}{1-\alpha}\right)$
, we use the Hölder inequality to obtain

Since the Sobolev embedding
$W^{1,2}(\Omega)\hookrightarrow L^{\frac{\theta}{\theta-1}}(\Omega)$
and (2.2) imply that

we make use of the Young inequality to deduce that

for all
$t>0$
. In order to guarantee that the last summand here can be absorbed by the dissipated quantity in (3.2), we next apply the Gagliardo–Nirenberg inequality and the mass conservation (2.1) to see that

for all
$t>0$
, whereupon substituting (3.4) and (3.5) into (3.3), we have

with
$C_6:=2C_5+\frac{C_3}{C_2}$
. This together with (3.2) entails that

and thus that

for all
$t>0$
. Here we used the Young inequality in the last inequality of (3.6) due to
$\frac{\theta-1}{\alpha\theta}\in(0,1)$
, which follows from
$\theta\in\left(1,\frac1{1-\alpha}\right)$
. Then by setting

and noticing that
$4C_1\epsilon\int_{\Omega}c_{\epsilon}^2\le 4C_1\int_{\Omega}c_{\epsilon}^2 $
due to the fact
$\epsilon\in(0,1)$
, we can conclude from (3.6) that

Since g(t) is nonnegative, we deduce from an ordinary differential inequality comparison argument that

for all
$t>0$
, which together with (3.7) yields that

for all
$t\geq0$
. Due to
$\alpha\in \left(0,\frac12\right)$
, we see from the Hölder inequality and the mass conservation (2.1) that

which together with (3.8) yields that

for all
$t\geq0$
, which entails (3.1).
Lemma 3.2. Suppose that (1.11)–(1.12) hold. Then there exists some positive constant C such that for all
$\epsilon\in(0,1)$
we have

Proof. For any fixed
$\theta\in\left(1,\frac1{1-\alpha}\right)$
, we test equation (1.9)
$_3$
by
$u_\epsilon$
and employ the Hölder inequality, the Sobolev embedding
$W^{1,2}(\Omega)\hookrightarrow L^{\frac{\theta}{\theta-1}}(\Omega)$
, the Poincaré inequality and the Young inequality to obtain that

By means of the Young inequality and (3.5), we have

due to
$\frac{\theta-1}{\alpha\theta}\in(0,1)$
. Noticing that

due to Lemma 3.1, we then see from (3.10) and Lemma 2.3 that

and thus that

for all
$t\geq0$
. This completes the proof of Lemma 3.2.
We next intend to improve our knowledge on the space-time
$L^p$
bound for
$c_{\epsilon}$
for any
$p\geq2$
. Indeed, for
$2\leq p\leq3$
, the following lemma is a direct result of Lemma 3.1.
Lemma 3.3. Suppose that (1.11)–(1.12) hold. Then for each
$p\geq2$
, we can find
$C>0$
such that for all
$\epsilon\in(0,1)$
,

Proof. Testing equation (1.9)
$_2$
by
$c_\epsilon^{p-1}$
, we obtain using the Hölder inequality that

for any
$r>1$
and all
$t>0$
. It then follows from the Gagliardo–Nirenberg inequality, the Young inequality and (2.2) that

and thus that

Taking
$r=\frac{p-2\alpha}{p-4\alpha}$
and applying the Gagliardo–Nirenberg inequality again, Lemma 3.1 and the mass conservation (2.1), we have

Consequently, setting

we can use (3.11) and the fact
$p\|c_{\epsilon}^{\frac{p}{2}}(\cdot,t)\|_{L^2(\Omega)}^2> py(t)$
for any
$\epsilon\in(0,1)$
to deduce that

for all
$t>0$
and thus from Lemma 2.3 and (3.12) that

for all
$t>0$
with
$C_6:=pC_3C_5+pC_3$
, which also implies that

This completes the proof of Lemma 3.3.
3.2 A time-independent spatial
$L^p$
bound for
$u_\epsilon$
In this subsection, we derive further regularity of
$u_\epsilon$
. Precisely, we will show the boundedness of
$\|u_\epsilon(\cdot, t)\|_{L^p(\Omega)}$
for all
$p\ge 1$
, which is based on the boundedness of
$\|\nabla u_\epsilon(\cdot, t)\|_{L^2(\Omega)}$
obtained by a key entropy-like estimate.
Lemma 3.4. Suppose that (1.11)–(1.12) hold. Then there exists some positive constant C such that for all
$\epsilon\in(0,1)$
we have

Proof. We will deduce our desired result by investigating the combinational functional of the form

with positive constants K and M to be determined.
For this purpose, since
$\|A^{\frac12} u_\epsilon\|_{L^2(\Omega)}=\|\nabla u_\epsilon\|_{L^2(\Omega)}$
, we first apply the Helmholtz projection
$\mathcal{P}$
to both sides of equation (1.9)
$_3$
, multiply the result with
$Au_\epsilon$
, integrate by parts over
$\Omega$
and use the Hölder inequality, the
$L^2$
boundedness of
$\mathcal{P}$
, the Gagliardo–Nirenberg inequality and the Young inequality to obtain

for all
$t>0$
. Here we used (3.9) in the last inequality. Then, we have

We next estimate the last term on the right-hand side of (3.13). Due to
$n_{\epsilon}>0$
in
$\bar{\Omega}\times(0,\infty)$
, we may test (1.9)
$_1$
by
$\mathrm{ln\,}n_{\epsilon}+1$
to see from the integration by parts over
$\Omega$
and the Young inequality, as well as the upper estimate (1.11) for S, that

and thus that

Noticing that

for all
$t>0$
by the Gagliardo–Nirenberg inequality and the mass conservation (2.1), we deduce from the Young inequality that

which together with (3.14) implies that

For the right-hand side of (3.15), we see from the Gagliardo–Nirenberg inequality and the Young inequality again that

due to
$\alpha\in\left(0,\frac12\right)$
, and thus that

To deal with the first integral on the right-hand side of (3.16), we test (1.9)
$_2$
by
$-\Delta c_{\epsilon}$
and integrate by parts over
$\Omega$
to get

For the first integral on the right-hand side of (3.17), it is clear that

On the other hand, for the second integral on the right-hand side of (3.17), we apply the Hölder inequality to obtain

Since

by the integration by parts and
$\nabla c_{\epsilon}\cdot \nu=0$
, we can use the geometric property

with
$C_{\Omega}$
an upper bound for the curvatures of
$\partial\Omega$
(see Lemma 4.2 in [Reference Mizoguchi and Souplet22]), the trace theorem and the Gagliardo–Nirenberg inequality to see that

and thus that

It then follows from the Gagliardo–Nirenberg inequality that

which together with (3.19) by the Gagliardo–Nirenberg inequality, the Poincaré inequality and Lemma 3.2 entails that

for all
$t>0$
. Combining (3.18), (3.22) and (3.17), we can deduce that

for all
$t>0$
, which together with (3.16) and (3.13) yields that

for all
$t>0$
. Thus, by taking
$K:=\frac{1}{16C_5}$
with
$ M:=\frac{1}{32C_3C_5}$
and setting

and

we have

Here we used the fact that

due to
$\xi \mathrm{\,ln\,} \xi\geq-\frac{1}{e}$
for all
$\xi>0$
.
According to the Gagliardo–Nirenberg inequality, the mass conservation (2.1) and Lemma 3.1, we can achieve that

This together with Lemmas 3.1 and 3.2 implies that

and thus that for each fixed
$t>0$
, we can find
$t_\star\equiv t_\star(t;\epsilon)\geq0$
such that
$t_\star\in\big( (t-1)_+, t\big)$
and

By means of the elementary inequality
$\xi \mathrm{\,ln\,} \xi\leq\frac{1-\alpha}{\alpha e}\xi^{\frac{1}{1-\alpha}}$
for all
$\xi>0$
, we infer that

and thus that

On the other hand, we can see from Lemmas 3.1, 3.2 and 3.3 that

and

for all
$t\geq1$
. Thus integrating (3.23) from
$t_\star$
to t, we can deduce that

Whereupon, this together with (3.24) yields our desired conclusion.
Lemma 3.5. Suppose that (1.11)–(1.12) hold. Then for all
$p>1$
, we can find some positive constant C such that for all
$\epsilon\in(0,1)$
,

Proof. This is a direct consequence of Lemma 3.4, the Sobolev embedding
$W^{1,2}(\Omega)\hookrightarrow L^{p}(\Omega)$
and the Poincaré inequality.
3.3 Time-independent spatial
$\boldsymbol{L}^{\textbf{4}}$
bounds for
$\boldsymbol{n}_{\boldsymbol\epsilon}$
and
$\boldsymbol\nabla \boldsymbol{c}_{\boldsymbol\epsilon}$
We now improve our knowledge on the spatial regularity of
$n_\epsilon$
by utilising a very subtle induction argument for
$n_\epsilon$
, which together with the damping effect of
$c_\epsilon$
will provide the key uniform
$L^2$
bound for
$\nabla c_\epsilon$
.
Lemma 3.6. Suppose that (1.11)–(1.12) hold. For any fixed
$\widehat{r}\in\big(1, \frac{2}{2-\alpha}\big)$
and
$p\ge 1$
, if it holds that for all
$\epsilon\in(0,1)$
,

with some positive constant K, then for any

we have

with some positive constant C.
Proof. Firstly, testing equation (1.9)
$_1$
by
$n_{\epsilon}^{s-1}$
, integrating by parts over
$\Omega$
and making use of the Young inequality, the Hölder inequality and the upper estimate (1.11) for S, we have

and thus that

for all
$ t\in (0,\infty)$
. For the first integral on the right-hand side of (3.26), we can deduce that

for all
$t\in(0,\infty)$
by (3.25) and
$s>2\alpha+\frac{p}{\widehat{r}}$
, while for the second one, we have

for all
$t\in(0,\infty)$
by (3.21) and (3.25). Thus, by substituting (3.27) and (3.28) into (3.26), we can obtain

for all
$t\in(0,\infty)$
. Noticing that

due to
$1< s< 2\alpha + \frac{p(p+ 2\alpha \widehat{r} +2 - 2 \alpha)}{p+2\widehat{r}}$
, we can use the Young inequality twice to obtain that

for all
$t\in(0,\infty)$
and thus that

for all
$t\in(0,\infty)$
.
On the other hand, in order to absorb the integral on the right-hand side of (3.29), we multiply equation (1.9)
$_2$
by
$-\Delta c_{\epsilon}$
and integrate on
$\Omega$
to obtain that

for all
$t\in(0,\infty)$
. Since the interpolation and the mass conservation (2.1) imply that

we have

for all
$t\in(0,\infty)$
. Similarly, it follows from

and the boundedness of
$\|u_\epsilon(\cdot, t)\|_{L^4(\Omega)}$
obtained in Lemma 3.5 that

for all
$t\in(0,\infty)$
. Substituting (3.31) and (3.32) into (3.30), we can see

for all
$t\in(0,\infty)$
.
Then combining (3.29) and (3.33), we obtain

with
$C_{16}:= C_{9} + 2(C_{12}+ C_{15})$
. To establish the uniform bound for the functional
$\int_{\Omega}n_{\epsilon}^{s} +\epsilon\int_{\Omega}|\nabla c_{\epsilon}|^2$
, we apply the Gagliardo–Nirenberg inequality, the Young inequality and the mass conservation (2.1) to gain

for all
$t\in(0,\infty)$
. Also noting
$\epsilon\in(0,1)$
, we have

for all
$t\in(0,\infty)$
. A direct calculation yields the desired result.
Corollary 3.1. Suppose that (1.11)–(1.12) hold. For any fixed
$\widehat{r}\in\big(1, \frac{2}{2-\alpha}\big)$
, we define the sequence
$\big\{ s_k\big\}_{k=0}^{\infty}$
by taking

Then for every
$k= 1, 2, 3, \cdots $
, there exists a positive constant
$C_k$
such that for all
$\epsilon\in(0,1)$
,

Proof. We can show the conclusion by an induction argument on k. Indeed, due to Lemmas 2.1 and 3.6, we see that the case
$k=1$
is true. Then assuming that the conclusion is valid for some positive constant k, we can use Lemma 2.2 to obtain

with some
$C_{1}>0$
, and thus have

with some positive constant
$C_{2}$
by Lemma 3.6. This implies Corollary 3.1.
Corollary 3.2. Suppose that (1.11)–(1.12) hold. Then there exists
$C>0$
such that for all
$\epsilon\in(0,1)$
,

Proof. Let
$\big\{ s_k\big\}_{k=0}^{\infty}$
be defined by Corollary 3.1. Then
$ s_k> 2\alpha + \frac1{\widehat{r}} s_{k-1}$
,
$(k=1, 2, 3, \cdots)$
, implies that

for
$k=1, 2, 3, \cdots$
. Noticing that
$ \frac{2\alpha\widehat{r}}{\widehat{r} -1 }>4$
due to
$\widehat{r}\in\big(1, \frac{2}{2-\alpha}\big)$
, we have
$s_k\ge 4$
for k large enough. It then follows from Corollary 3.1 that
$\|n_{\epsilon}(\cdot,t)\|_{L^{4}(\Omega)}$
is bounded in
$(0, \infty)$
.
With the boundedness of
$\|n_{\epsilon}(\cdot,t)\|_{L^{4}(\Omega)}$
at hand, we now turn back the proof of Lemma 3.6 to achieve the key boundedness of
$\|\nabla c_{\epsilon}(\cdot,t)\|_{L^{2}(\Omega)}$
.
Lemma 3.7. Suppose that (1.11)–(1.12) hold. Then there exists
$C>0$
such that for all
$\epsilon\in(0,1)$
,

Proof. By repeating the proof of (3.30), (3.31) and (3.32) in Lemma 3.6 and using Corollary 3.2, we can deduce that

for all
$t\in(0,\infty)$
. Then a direct calculation can complete the proof of Lemma 3.7.
Lemma 3.8. Suppose that (1.11)–(1.12) hold. Then for any
$q>1$
, there exists
$C>0$
such that for all
$\epsilon\in(0,1)$
,

Proof. We apply
$\nabla$
to equation (1.9)
$_2$
and test the resulting equation by
$|\nabla c_{\epsilon}|^{2(p-1)}\nabla c_{\epsilon}$
with
$p>\frac32$
to get

which together with the pointwise identity
$2\nabla c_{\epsilon}\cdot\nabla\Delta c_{\epsilon}=\Delta|\nabla c_{\epsilon}|^2-2|D^2 c_{\epsilon}|^2$
and the integration by parts yields that

for all
$ t\in(0,\infty)$
. For the first term on the right-hand side of (3.34), it follows from the pointwise inequality
$|\Delta c_{\epsilon}|^2\le 2|D^2 c_{\epsilon}|^2$
, the integration by parts and the Young inequality that

while for the second and third terms, we have

and

For the last term on the right-hand side of (3.34), we know from the geometry property (3.20), the trace theorem, the Gagliardo–Nirenberg inequality, the Young inequality and Lemma 3.7 that

for all
$t\in(0,\infty)$
. Inserting (3.35)–(3.38) into (3.34), we deduce that

for all
$t\in(0,\infty)$
. Noticing that

by Corollary 3.2 and Lemma 3.7, and that

by Lemmas 3.5 and 3.7 again, we have

Thus, a direct calculation yields the boundedness of
$\|\nabla c_{\epsilon}(\cdot,t)\|_{L^{2p}(\Omega)}$
for any
$p>\frac32$
. Then in light of the Hölder inequality we can complete the proof of Lemma 3.8.
Lemma 3.9. Suppose that (1.11)–(1.12) hold. Then there exist a sequence
$\big\{\epsilon_j\big\}_{j=1}^{\infty}$
and a unique global classical solution (n, c, u, P) to the PE-fluid system (1.10) with the properties that

as
$j \to \infty$
.
Proof. We know from Lemmas 3.8 and 3.5 that

Therefore, in light of taking
$d=2$
,
$T=\infty$
,
$\lambda=\infty$
,
$q=4$
and
$r=4$
in Theorem 1.1 of [Reference Wang, Winkler and Xiang30], we can complete the proof of Lemma 3.9. Here the convexity of
$\Omega$
can actually be removed as pointed out by Remark (i) in [Reference Wang, Winkler and Xiang30] and the uniqueness of solution
$(n,c,u.P)$
to the PE-fluid system (1.10) can be derived from a standard energy method and a bootstrap argument, and thus we omit the details.
4 Convergence rate
In the section, we will first derive the convergence rate for general large initial data and in particular obtain the convergence of the whole sequence
$(n_{\epsilon},c_{\epsilon},u_\epsilon)$
(not just a subsequence as in Lemma 3.9). Then we derive some new exponential time decay estimates of
$(n_\epsilon, c_\epsilon, u_\epsilon)$
with suitable small initial cell mass uniformly in
$\epsilon$
. As a by-product, we improve the growth in time t as at most
$\frac12$
-order.
For simplicity, letting (n, c, u, P) be the classical solution of the PE-fluid system (1.10) obtained in Lemma 3.9 and setting

we see that
$(\widehat{n},\widehat{c},\widehat{u})$
is a solution to the following system:

4.1 The general large initial data case
Lemma 4.1. Suppose that (1.11)–(1.12) hold. There exists a positive constant C such that for each
$\epsilon\in(0,1)$
,

Proof. Since

we can see from the boundedness of
$c_{\epsilon}$
and c, which follows from Lemma 3.8 and the Sobolev embedding, that

To establish the
$L^2$
space-time estimate of
$\partial_t c$
, we first derive the uniform estimates for the difference quotient

with
$\tau\in(0, \infty)$
and
$h\in(-\tau, \infty)$
. It is easy to show that for each
$t\in(\tau, \infty)$
,
$c_h(\cdot,t) \in C^2(\overline{\Omega})$
is a classical solution of the homogeneous Neumann boundary-value problem for

in
$\Omega$
, where

Then testing the above equation by
$c_h(\cdot, t)$
, we obtain from integrating by parts over
$\Omega$
, the solenoidality of u and the Hölder inequality that

for all
$t\in(\tau,\infty)$
, which together with the uniform boundedness of
$\|\nabla c(\cdot, t+h)\|_{L^{4}(\Omega)}$
entails that

for all
$t\in(\tau,\infty)$
, and thus that

where in the last inequality we used the temporal version of Theorem 3(i) in Section 5.8.2, [Reference Evans7].
For the first integral on the right-hand side of (4.3), we can use the maximal regularity of parabolic equations (see Theorem 2.3 in [Reference Giga and Sohr10]) and the trace theorem to obtain

where in the last inequality, we used the bounds for n, u and
$\nabla c$
derived from the proofs of Lemmas 2.2, 2.3 and 5.3 in [Reference Wang, Winkler and Xiang30], respectively, and the growth estimates
$\|\nabla n\|^2_{L^2((0, t+1);L^2(\Omega))}\leq C(1+t)$
and
$\|D^2 c\|^2_{L^{2}((0, t+1);L^2(\Omega))}\leq C(1+t)$
obtained by following the proof of Lemma 3.4 in [Reference Wang, Winkler and Xiang30] and by a direct integral in equation (1.10)
$_2$
, respectively. On the other hand, for the second integral on the right-hand side of (4.3), we can utilise the Sobolev maximal regularity of Stokes equation (see Theorem 2.1 in [Reference Giga and Sohr10]) and
$\|n\|^2_{L^{2}((0, t+1);L^2(\Omega))}\leq C(1+t)$
to obtain that

and thus that

Consequently, inserting (4.4) and (4.5) into (4.3), we see that

and that there exists
$(h_i)_{i\in\mathbb N}$
satisfying
$h_i\to 0$
and
$c_{h_i} \to \partial_tc$
in
$L^2(\Omega\times (\tau,t))$
as
$i\to\infty$
with the same bound
$\int_\tau^t \int_{\Omega} (\partial_tc)^2 \le C_{14}(1+t)$
. Since
$C_{14}$
is independent of
$\tau$
, we may take
$\tau \searrow 0$
to obtain
$\int_0^t \int_{\Omega} (\partial_tc)^2 \le C_{14}(1+t)$
, which together with (4.2) completes the proof of Lemma 4.1.
Lemma 4.2. Suppose that (1.11)–(1.12) hold. Then there exists
$C>0$
such that for each
$\epsilon\in(0,1)$
,

and

Proof. The proof is parallel to that of Lemma 5.2 in [Reference Li and Xiang19] and thus we omit the details here.
Lemma 4.3. Suppose that (1.11)–(1.12) hold. Then there exists
$C>0$
such that for each
$\epsilon\in(0,1)$
,

Proof. Applying the Helmholtz projection
$\mathcal{P}$
to both sides of equation (4.1)
$_3$
and testing the resulting equation with
$A\widehat{u}$
, we obtain

where we used the uniform boundedness of
$\| u_\epsilon\|_{L^4(\Omega)}$
and the boundedness of
$\|\nabla u\|_{L^2(\Omega)}$
. It then follows from Lemma 4.2 and
$\widehat{u}(\cdot,0)=0$
that

for all
$t\in(0,\infty)$
. This completes the proof of Lemma 4.3.
Lemma 4.4. Suppose that (1.11)–(1.12) hold. Then for any given
$\theta\in\big(\frac12,\frac34\big)$
, there exists
$C(\theta)>0$
such that for each
$\epsilon\in(0,1)$
,

In particular, there exists a positive constant C such that

Proof. Using the variation-of-constants representation of
$\widehat{u}$
, we have

Setting
$ f(\cdot,s) := \mathcal{P}\big(u_\epsilon\cdot\nabla \widehat{u} + \widehat{u}\cdot\nabla u - \widehat{n}\nabla\phi \big)(\cdot,s)$
, we can use the Hölder inequality, the Gagliardo–Nirenberg inequality, the boundedness of
$u_\epsilon$
, Lemmas 4.2 and 4.3 to obtain

and thus have

for some
$\lambda>0$
due to
$\widehat{u}(\cdot, 0)=0$
and
$\theta\in\big(\frac12,\frac34\big)$
. For the last integral on the right-hand side of (4.8), we apply the Gagliardo–Nirenberg inequality, (4.5) and the boundedness of
$\|{u}\|_{L^\infty(\Omega\times(0,\infty))}$
to obtain

for all
$t\in(0,\infty)$
. This together with (4.8) and the fact
$1+t\leq e^t$
yields that

Meanwhile, the estimate of
$\|\widehat{u}(\cdot,t)\|_{L^{\infty}(\Omega)}$
will follow from
$D({A}^\theta)\hookrightarrow L^\infty(\Omega)$
due to
$\theta\in\left(\frac12,\frac34\right)$
. This completes the proof of Lemma 4.4.
Lemma 4.5. Suppose that (1.11)–(1.12) hold. Then for any
$p\ge 2$
, there exists
$C(p)>0$
such that for each
$\epsilon\in(0,1)$
,

Proof. The proof is parallel to that of Lemma 5.4 in [Reference Li and Xiang19] and thus we omit the details here.
Proof of Theorem 1.1. We can conclude the desired result using Lemmas 3.9, 4.2, 4.4 and 4.5.
4.2 The small initial cell mass case
In this subsection, we first show the time decay of solutions to the PP-fluid system (1.9) with suitable small initial cell mass, which will be used to improve the exponential growth on time t in the fast signal diffusion limit procedure.
Lemma 4.6. Suppose that (1.11)–(1.12) hold. Then if

holds for some suitable small
$\delta>0$
, then there exist two positive constants C and
$\mu$
such that

provided that
$\epsilon$
is suitable small.
Proof. Firstly, we multiply equation (1.9)
$_1$
by
$n_{\epsilon}-\overline{n}_0$
and integrate by parts over
$\Omega$
to obtain

for all
$t\in(0,\infty)$
, and thus have

for all
$t\in(0,\infty)$
. Since the Poincaré inequality and the interpolation entail that

and

we deduce from the Gagliardo–Nirenberg inequality, the Young inequality, Lemma 3.8 and the interpolation that

and thus that

for all
$t\in(0,\infty)$
provided that
$\delta$
is suitable small.
To absorb the right-hand side of (4.11), we test equation (1.9)
$_2$
by
$c_{\epsilon}-\overline{n}_0$
, integrate by parts over
$\Omega$
and utilise the Hölder inequality and the Young inequality to obtain

for all
$t\in(0,\infty)$
, and then have

for all
$t\in(0,\infty)$
. This together with (4.11) yields that

for all
$t\in(0,\infty)$
. Without loss of generality, we can assume
$0<\epsilon<\min\big\{1, 8C_1\big\}$
and set

to obtain

Integrating (4.13) from 0 to t, we conclude that

for all
$t\in(0,\infty)$
, which entails (4.10).
Lemma 4.7. Under the assumption of Lemma 4.6, there exist two positive constants C and
$\mu$
such that

provided that
$\epsilon$
is suitable small.
Proof. By repeating the proof of (4.12), we can see from Lemma 4.6 that

for all
$t\in(0,\infty)$
and some positive constants
$C_1$
and
$\mu_1$
. Then by setting

and letting
$0<\epsilon<\min\big\{1, \frac1{2\mu_1}\big\}$
, we have

and thus

for all
$t\in(0,\infty)$
. This completes the proof of Lemma 4.7.
Corollary 4.1. Under the assumptions of Lemma 4.6, there exist two positive constants C and
$\mu$
such that for any
$p>1$
,

provided that
$\epsilon$
is suitable small.
Proof. For any fixed
$q>p>1$
, we use the Gagliardo–Nirenberg inequality, the
$W^{1,q}$
boundedness of
$c_{\epsilon}$
and Lemma 4.7 to get

for some
$\mu>0$
and all
$t\in(0,\infty)$
, where
$ \theta_1 = \frac{q(p-1)}{(q-1)p}\in(0,1)$
.
Lemma 4.8. Under the assumptions of Lemma 4.6, there exist two positive constants C and
$\mu$
such that

and

provided that
$\epsilon$
is suitable small.
Proof. Let
$\big(e^{t\Delta}\big)_{t\ge0}$
be the homogeneous Neumann heat semigroup in
$\Omega$
. Since

for all
$t\in(0,\infty)$
, we can use the fact
$e^{t\triangle}\overline{n}_0=\overline{n}_0$
to obtain

To estimate
$J_1$
,
$J_2$
and
$J_3$
, we first deduce from the asymptotics of the Neumann heat semigroup (see Lemma 1.3 in [Reference Winkler35]) that

due to
$\int_{\Omega}(n_0-\overline{n}_0)dx=0$
,

and

for any fixed
$2<q<3$
with some positive constants
$k_1, k_4$
and
$\lambda_1$
. Then since Corollaries 3.2 and 4.1 entail that

for some
$\mu_1>0$
, we can further estimate
$J_2$
as

for all
$t\in(0,\infty)$
. Next, we can take a similar procedure to further estimate
$J_3$
. Indeed, it follows from the interpolation, Lemmas 4.6, 3.5 and Corollary 3.2 that

for some
$\mu_2>0$
, which entails that

for all
$t\in(0,\infty)$
. Inserting
$J_1, J_2$
and
$J_3$
into (4.16), we can achieve (4.14).
In order to get (4.15), it is sufficient to show that

with
$\beta\in(\frac12,1)$
and
$\mu>0$
due to the embedding
$D(A^\beta)\hookrightarrow L^\infty(\Omega)$
. For this purpose, we first test equation (1.9)
$_3$
by
$u_\epsilon$
, integrate by parts over
$\Omega$
and employ the solenoidality of
$u_\epsilon$
, the Hölder inequality, Lemma 4.6 and Lemma 3.5 to obtain that

for all
$t\in(0,\infty)$
with some
$\mu_3>0$
. Due to
$u_\epsilon=0$
on
$\partial\Omega$
, it then follows from the Poincaré inequality that

Thus, without loss of generality, we may assume
$\mu_3<\frac{1}{C_{10}}$
to deduce that

Following the proof of (3.13), we have

for all
$t\in(0,\infty)$
, which together with (4.17), Lemmas 4.6 and 3.4 yields that

with some
$\mu_4>0$
. Since

for all
$t\in(0,\infty)$
, we have

This together with (4.17) warrants that

with some
$\mu_5>0$
. Noticing that
$\mathcal{P}\big( \overline{n}_0 \nabla\phi \big)=0$
, we can use the variation-of-constants representation

of
$u_\epsilon$
to get

for all
$t\in(0,\infty)$
with some
$K_1>0$
and
$\mu_6>0$
by Lemma 2.3(i) in [Reference Yu, Wang and Zheng40]. Since Lemma 3.9, (4.18) and Lemma 4.6 entail that

with some
$\mu_7>0$
, we have

with some
$\mu_8>0$
. On the other hand, it is clear that

which together with (4.19) implies (4.15). This completes the proof of Lemma 4.8.
We now apply the exponential decay estimate of
$(n_{\epsilon}, c_{\epsilon}, u_\epsilon)$
to establish an at most
$\frac12$
-order growth on time t in the convergence of the PP-fluid system (1.9) to the PE-fluid system (1.10).
Lemma 4.9. Under the assumptions of Lemma 4.6, there exists
$C>0$
such that for each suitable small
$\epsilon\in(0,1)$
,

and

Proof. We will deduce our desired result by analysing an entropy-like evolution estimate involving
$\widehat{n}$
,
$\widehat{u}$
and
$c_{\epsilon}$
of the form

with some K to be determined. For this purpose, testing equation (4.1)
$_1$
by
$\widehat{n}$
and integrating by parts over
$\Omega$
, we obtain


Noticing that the Gagliardo–Nirenberg inequality entails that

and

where
$\xi$
lies between
$n_{\epsilon}$
and n, and
$\eta$
lies between
$c_{\epsilon}$
and c, respectively, while
$\gamma>0$
is to be determined, we can use Corollary 4.1 and Lemma 4.8 to deduce that

for all
$t\in(0,\infty)$
with some
$\mu_1>0$
.
We next test equation (4.1)
$_2$
by
$\widehat{c}$
and use the integration by parts over
$\Omega$
to obtain

Due to
$\int_{\Omega}\widehat{n}=0$
, the Poincaré inequality and Corollary 4.1 imply that

for all
$t\in(0,\infty)$
with some
$\mu_2>0$
.
Finally, multiplying equation (4.1)
$_3$
by
$\widehat{u}$
and using the Poincaré inequality again since
$\widehat{u}=0$
on
$\partial\Omega$
and
$\int_{\Omega}\widehat{n}=0$
, we see that

and thus that

We now take
$T_1$
large enough such that

and
$\delta$
suitable small such that

Then by setting

we deduce from (4.20)–(4.22) that

with
$\mu=\min\big\{\mu_1, \mu_2\big\}$
, which together with the Poincaré inequality yields that

For simplicity, we set

and

as well as

we have

If we further take
$T_2$
large enough such that
$2 C_{14} e^{-\mu t} < C_{13}$
for all
$t>T_2$
, we can conclude that

with
$T_0:=\max\big\{T_1, T_2\big\}$
. It then follows from Lemmas 4.1, 4.2 and the uniform boundedness of
$c_{\epsilon}$
that

for all
$t\in(T_0,\infty)$
, which also implies that

This together with the Poincaré inequality yields the desired results on
$(T_0,\infty)$
, while on
$(0, T_0)$
, the conclusions follow from Lemma 4.2 directly. This completes the proof of Lemma 4.9.
Applying the second estimate in Lemma 4.9 to the first inequality in (4.6), we can also obtain the growth estimate of
$\nabla\widehat{u}$
.
Corollary 4.2. Under the assumptions of Lemma 4.6, there exists
$C>0$
such that for each suitable small
$\epsilon\in(0,1)$
,

Lemma 4.10. Under the assumptions of Lemma 4.6, for any given
$\theta\in\big(\frac12,\frac34\big)$
, there exists a positive constant
$C(\theta)$
such that for each suitable small
$\epsilon\in(0,1)$
,

Proof. Similar to the proof of Lemma 4.4, we can see from Lemma 4.9, Corollary 4.2 and (4.9) that

Lemma 4.11. Under the assumptions of Lemma 4.6, for any given
$ p>2$
, there exists a positive constant C(p) such that for each suitable small
$\epsilon\in(0,1)$
,

Proof. We first multiply equation (4.1)
$_1$
by
$\widehat{n}^{\,p-1}$
with
$p>2$
and integrate by parts over
$\Omega$
to obtain

Noting that Lemmas 4.8, 3.9 and Corollary 4.1 entail that

for all
$t\in(0,\infty)$
and any
$q>1$
with some
$\mu>0$
, we can use the Hölder inequality, the boundedness of
$n_{\epsilon}$
and n, Corollary 4.1 and the Young inequality to obtain that for any fixed
$q_0>p$
,

Similarly, we have

and thus deduce from the Young inequality that

Without loss of generality, we assume
$ C_7>1$
and take suitable small
$\delta$
such that
$\overline{n}_0<1$
. Then since

and

we can use the fact

Lemma 4.9 and Corollary 4.2 to obtain

due to
$p>2$
and
$\epsilon\in(0,1)$
. By setting

we have

Thus, a direct calculation implies that

for all
$t\in(0,\infty)$
due to
$y(0)=0$
. For the first integral on the right-hand side of (4.23), we have

while for the second one, we can make use of the interpolation inequality, Lemmas 3.8, 4.9 and the Hölder inequality to deduce that

with
$q>p+2>4$
. Similarly, for the third integral, we also have

These three estimates together with (4.23) yield that

for all
$ t\in(0,\infty)$
. This completes the proof of Lemma 4.11.
Proof of Theorem 1.2. A direct application of Corollary 4.1 and Lemmas 4.8–4.11 implies the desired conclusion.
5. Numerical experiments
In this section, we carry out the numerical simulations to look into the convergence behaviour depending on
$\epsilon$
and t. Set
$\Omega = \{x \in \mathbb{R}^2 : |x| < 1 \}$
. We solve the PP-fluid system (1.9) and the PE-fluid system (1.10) with the chemotactic sensitivity

We will compute and plot the following norms to observe the experimental convergence rates:

In all numerical examples, we take the initial velocity
$u_0 = (0,0)$
and assign the initial concentration
$c_0$
as the solution of

We select three initial cell densities
$n_0$
(presented below), which result in three different types of solution.

Figure 1. Example 1. (n, c, u) of the PE-fluid system.

Figure 2. Example 1.
$(n_\epsilon,c_\epsilon,u_\epsilon)$
of the PP-fluid system with
$\epsilon=0.5$
.
Example 1. We set
$\alpha =\frac14$
,
$a_1 = a_2 = b_1 = b_2 = \frac12$
,
$\nabla\phi = (1,-1)$
. The initial density
$n_0$
is given by:

The evolution of the PE-fluid system and PP-fluid system with
$\epsilon = 0.5$
is shown in Figures 1 and 2, respectively, where the colour bars illustrate the magnitude of
$(n,c,|u|)$
and
$(n_\epsilon,c_\epsilon,|u_\epsilon|)$
, and the arrows in the figures of u and
$u_\epsilon$
represent the direction of velocity. Both two solutions tend to the nontrivial equilibrium with the cells and chemical concentrating at the lower left quarter, whereas the PE-fluid system approaches the equilibrium quicker, and the motion of the PP-fluid system seems to be a delay of the PE-fluid system. In the following, we investigate the convergence of
$(\widehat{n}, \widehat{c}, \widehat{u})$
depending on
$\epsilon$
and t, respectively.
Now let us fix
$t=2$
and compute the norms of
$(\widehat{n}(t),\widehat{c}(t),\widehat{u}(t))$
on different
$\epsilon$
. The results are plotted in log-scale in Figure 3 (Ex1-
$\epsilon$
). All the errors decrease in the same rate to the solid straight line
$y=\epsilon$
, which means that the experiment enjoys the
$O(\epsilon)$
-convergence. It is better than the theoretical results (Theorems 1.1 and 1.2), but not a surprise because any sufficiently smooth solution (in particular, the norms of
$\partial_t c_\epsilon$
are bounded independent of the reciprocal of
$\epsilon$
) will result the optimal convergence.

Figure 3. We fix
$t=2$
for Example 1,
$t=0.3$
for Example 2 and
$t=4$
for Example 3. The three figures, (Ex1-
$\epsilon$
), (Ex2-
$\epsilon$
) and (Ex3-
$\epsilon$
), show the norms of
$(\widehat{n}(t), \widehat{c}(t), \widehat{u}(t))$
depending on
$\epsilon$
for the Example 1, 2 and 3, respectively. The errors plotted in log-scale decrease as with
$\epsilon$
(the solid straight line), which indicates the convergence rate
$O(\epsilon)$
for all three numerical examples.
Next, we fix
$\epsilon = 2^{-5}$
and compute the errors for various t (see Figure 4 (Ex1-t)). Be aware of the PE-fluid system and PP-fluid system tend to the same nontrivial equilibrium, the deviation
$(\widehat{n},\widehat{c},\widehat{u})$
will extinguish. Figure 4 (Ex1-t) exhibits the decreasing of the error over t. However, it is saturated near
$10^{-6}$
due to the numerical approximation.
Example 2. We replace the initial value
$n_0$
of the previous example by a symmetry function:

Both (n, c) and
$(n_\epsilon, c_\epsilon)$
rapidly tend to the constant equilibriums
$(\overline{n}_0,\overline{n}_0)$
(see Figures 5 and 6). The difference between the PE-fluid system and PP-fluid system is tiny. In this example, the velocity u and
$u_\epsilon$
vanish quickly. In fact, the amplitudes of u and
$u_\epsilon$
are very small (see the colour bar of u and
$u_\epsilon$
), and the pressures P and
$P_\epsilon$
tend to the function
$\overline{n}_0 \phi = \overline{n}_0(x-y)$
almost instantly (note that
$\nabla \phi = (1,-1)$
and
$\nabla P = n \nabla \phi$
when
$u = 0$
).

Figure 5. Example 2. (n, c, u) of the PE-fluid system.

Figure 6. Example 2.
$(n_\epsilon,c_\epsilon,u_\epsilon)$
of the PP-fluid system with
$\epsilon=0.25$
.

Figure 7. Example 3. (n, c, u) of the PE-fluid system.

Figure 8. Example 3.
$(n_\epsilon,c_\epsilon,u_\epsilon)$
of the PP-fluid system with
$\epsilon=0.5$
.
Now we fix
$t=0.3$
and plot the error for various
$\epsilon$
(see Figure 3 (Ex2-
$\epsilon$
)), which reveals the
$O(\epsilon)$
-convergence of the fast signal diffusion limit. Next for fixed
$\epsilon = 2^{-5}$
, we compute and plot the error for different t in Figure 4 (Ex2-t). Since both the PE-fluid system and PP-fluid system tend to the trivial equilibrium
$(\overline{n}_0,\overline{n}_0,0,\overline{n}_0 \phi)$
, the norms of
$(\widehat{n},\widehat{c},\widehat{u})$
will diminish to 0. The experimental errors of n and c decrease over t but are bounded below because the numerical error exists. We mention that the experimental
$\|\widehat{u}(t)\|_{L^\infty}$
and
$\|\widehat{u}(t)\|_{H^1}$
also decrease to 0 in the simulation. But the computation results of the relative errors
$\mathrm{uLInf}=\|\widehat{u}(t)\|_{L^\infty}/\|u(t)\|_{L^\infty}$
and
$\mathrm{uH1}=\|\widehat{u}(t)\|_{H^1}/\|u(t)\|_{H^1}$
are polluted because the denominators also tend to zero. Therefore, we shall ignore the curves of uLInf and uH1 in (Ex2-t), which cannot demonstrate the real convergence behaviour of
$\|\widehat{u}\|$
.
Example 3. Change the parameters
$\alpha = \frac12$
,
$a_1 = a_2 = 2$
,
$-b_1 = b_2 = 1$
of the chemotactic sensitivity function and take the initial density

We carry out the simulation with the anticlockwise rotating aggregations (see Figures 7 and 8). The cells and chemicals first disperse and move to the lower left quarter, and then gather and rotate anticlockwise along the boundary. The circular motion of the aggregation is nonuniform. Roughly speaking, the rotation accelerates at the lower left quarter and decelerates near the upper right quarter. The PP-fluid system with smaller
$\epsilon$
has a shorter rotation period and the solution is closer to the PE-fluid system.
Figure 3. (Ex3-
$\epsilon$
) indicates the
$O(\epsilon)$
-convergence of
$(\widehat{n}(t),\widehat{c}(t),\widehat{u}(t))$
for fixed
$t=4$
. Figure 4 (Ex3-t) shows the errors on t for fixed
$\epsilon = 2^{-5}$
. When the rotation of the PE-fluid system is tardy near
$t=4$
and
$t=14$
, the evolution of the PP-fluid system catches up and the difference becomes small. On the contrary, the rotation of the PE-fluid system speeds up around
$t=10$
and
$t=20$
, while motion of the PP-fluid system is delayed, which causes the big increment of error.
Remark 5.1. Theorem 1.1 concludes the
$O\left(e^{Ct} \epsilon^\frac{1}{2}\right)$
-convergence for the general global bounded solution, and Theorem 1.2 improves the estimate to
$O\left(t^{\frac{1}{2}} \epsilon^\frac{1}{2}\right)$
for the solutions with the trivial equilibrium. Above three numerical examples further explore this topic by investigating the experimental convergence behaviour on different types of solutions. If
$\partial_t c_\epsilon$
is smooth enough and bounded independent of
$\epsilon^{-\ell}$
(
$\ell>0$
), it seems quite possible to obtain the
$O(\epsilon)$
-convergence, and the numerical results confirm that. When the PE-fluid system and PP-fluid system tend to the same equilibrium, nontrivial or trivial, the deviation between them shall vanish as t increases, which is revealed in the Example 1 and 2. The case of the rotating solution is complicated and interesting. The error between the PE-fluid system and PP-fluid system fluctuates drastically in consequence of the nonuniform rotating speed together with the different rotation periods, which brings challenges to the elaborate convergence analysis.
Acknowledgements
The authors are very grateful to all three referees for their detailed comments and valuable suggestions, which greatly improved the manuscript. Z. Xiang was partially supported by the NNSF of China (no. 11971093), the Applied Fundamental Research Program of Sichuan Province (no. 2020YJ0264) and the Fundamental Research Funds for the Central Universities (no. ZYGX2019J096). G. Zhou was partially supported by the NNSF of China (nos. 12171071, 12071061).