1 Introduction
The purpose of this article is to give a new upper bound for Neumann eigenvalues of the Laplacian on a bounded convex domain in Euclidean space and a universal inequality for Neumann eigenvalues of the Laplacian.
Let $\Omega $ be a bounded domain in Euclidean space with piecewise smooth boundary. We denote by $\lambda _k(\Omega )$ the kth positive Neumann eigenvalues of the Laplacian on $\Omega $ . For a finite sequence $\{A_{\alpha }\}_{\alpha =0}^k$ of Borel subsets of $\Omega $ , we set
where $d(A_{\alpha },A_{\beta }):=\inf \{d(x,y) \mid x\in A_{\alpha },y\in A_{\beta }\}$ and d is the Euclidean distance function.
Throughout this paper, we write $\alpha \lesssim \beta $ if $\alpha \leq c\beta $ for some universal concrete constant $c>0$ (which means c does not depend on any parameters such as dimension and k, etc.).
One of the main theorems in this paper is as follows.
Theorem 1.1 Let $\Omega $ be a bounded convex domain in $\mathbb {R}^n$ with piecewise smooth boundary, and let $\{A_{\alpha }\}_{\alpha =0}^k$ be a sequence of Borel subsets of $\Omega $ . Then we have
Remark 1.1 The above theorem also holds for Neumann eigenvalues of the Laplacian on bounded convex domains in a manifold of nonnegative Ricci curvature. The proof only uses Lemma 3.1, which follows from the Bishop–Gromov inequality.
In [Reference Chung, Grigor’yan and Yau3, Reference Chung, Grigor’yan and Yau4], Chung, Grigory’an, and Yau obtained
for a bounded (not necessarily convex) domain $\Omega $ and its Borel subsets $\{A_{\alpha }\}$ (see also [Reference Funano and Sakurai9, Reference Gozlan and Herry10]). Compared to their inequality, the inequality (1.1) is better for large k if we fix n. Their inequality is better for large n if we fix k. Theorem 1.1 also gives an answer to Question 5.1 in [Reference Funano6] up to $n^2$ factor.
As an application of Theorem 1.1, we obtain the following universal inequality for Neumann eigenvalues of the Laplacian.
Theorem 1.2 Let $\Omega $ be a bounded convex domain in $\mathbb {R}^n$ with piecewise smooth boundary. Then we have
Related with (1.2), the author conjectured in [Reference Funano5, Reference Funano7] that
holds under the same assumption of Theorem 1.2. In [Reference Funano6, equation (1.3)], the author proved that
for a bounded convex domain $\Omega $ . The inequality (1.2) avoids the dependence of k for the upper bound of the ratios $\lambda _{k+1}(\Omega )/\lambda _k(\Omega )$ and gives a better inequality if $\log k \geq n$ . In [Reference Funano5, Reference Funano7], the author proved a dimension-free universal inequality $\lambda _k(\Omega )\lesssim c^k \lambda _1(\Omega )$ for a bounded convex domain in $\mathbb {R}^n$ and for some universal constant $c>1$ . In [Reference Liu13, Theorem 1.5], Liu showed an optimal universal inequality $\lambda _k(\Omega )\lesssim k^2\lambda _1(\Omega )$ under the same assumption. Thus, $n^2$ factor is not needed for small k (e.g., $k=2,3$ ) in (1.2). As mentioned in [Reference Funano6, equation (1.5)] combining Milman’s result [Reference Milman14] with Cheng and Li’s result [Reference Cheng and Li2], one can obtain $\lambda _k(\Omega )\gtrsim k^{2/n}\lambda _1(\Omega )$ under the same assumption. Together with Liu’s inequality, this shows
The inequality (1.2) is better than this inequality for large k if we fix n. This inequality is better for large n if we fix k.
2 Preliminaries
We collect several results to use in the proof of our theorems.
Proposition 2.1 [Reference Buser1, Theorem 8.2.1]
Let $\Omega $ be a bounded domain in a Euclidean space with piecewise smooth boundary, and let $\{\Omega _{\alpha }\}_{\alpha =0}^{l}$ be a finite partition of $\Omega $ by subdomains in the sense that $\operatorname {vol} (\Omega _\alpha \cap \Omega _{\beta })=0$ for each different $\alpha ,\beta $ . Then we have
Refer to [Reference Gromov11, Appendix ${C}_{+}$ ] for a weak form of the above proposition.
Theorem 2.2 [Reference Payne and Weinberger15, equation $(1.2)$ ]
Let $\Omega $ be a bounded convex domain in a Euclidean space with piecewise smooth boundary. Then we have
Combining Proposition 2.1 with Theorem 2.2 in order to give a “good” lower bound for Neumann eigenvalues of the Laplacian, it is enough to provide a “good” finite convex partition of the domain.
For an upper bound of Neumann eigenvalues, we mention the following theorem.
Theorem 2.3 [Reference Kröger12, Theorem 1.1]
Let $\Omega $ be a bounded convex domain in $\mathbb {R}^n$ with piecewise smooth boundary. For any natural number k, we have
In order to construct a “good” partition, we recall a Voronoi partition of a metric space. Let X be a metric space, and let $\{x_{\alpha }\}_{\alpha \in I}$ be a subset of X. For each $\alpha \in I$ , we define the Voronoi cell $C_{\alpha }$ associated with the point $x_{\alpha }$ as
If X is a bounded convex domain $\Omega $ in a Euclidean space, then $\{C_{\alpha }\}_{\alpha \in I}$ is a convex partition of $\Omega $ (the boundaries $\partial C_{\alpha }$ may overlap each other). Observe also that if the balls $\{ B(x_{\alpha },r)\}_{\alpha \in I}$ of radius r cover $\Omega $ , then $C_{\alpha } \subseteq B(x_{\alpha },r)$ , and thus $\operatorname {Diam} (C_{\alpha } )\leq 2r$ for any $\alpha \in I$ .
3 Proof of Theorems 1.1 and 1.2
We use the following key lemma to prove Theorem 1.1.
Lemma 3.1 [Reference Funano8, Lemma 3.1]
Let $\Omega $ be a bounded convex domain in $\mathbb {R}^n$ with a piecewise smooth boundary. Given $r>0$ , suppose that $\{x_{\alpha }\}_{\alpha =0}^{l}$ is r-separated points in $\Omega $ , i.e., $d(x_{\alpha },x_{\beta })\geq r$ for distinct $\alpha $ , $\beta $ . Then we have
Proof of Theorem 1.1
Suppose that there is a sequence $\{ A_{\alpha }\}_{\alpha =0}^{k}$ of Borel subsets such that
for sufficiently large $c>0$ . Since $(k+1)\operatorname {vol}(A_{\alpha })\leq \operatorname {vol}(\Omega )$ for some $\alpha $ , we have
For each $\alpha $ , we fix a point $x_{\alpha }\in A_{\alpha }$ . The sequence $\{x_{\alpha }\}_{\alpha =0}^{k}$ is then $r_0$ -separated in $\Omega $ by (3.1). By virtue of Lemma 3.1, we get
For sufficiently large c, this is a contradiction. This completes the proof of the theorem.
We can reduce the number of $\{A_{\alpha }\}$ in Theorem 1.1 as follows.
Lemma 3.2 Let $\Omega $ be a convex domain in $\mathbb {R}^n$ , and let $\{A_{\alpha }\}_{\alpha =0}^{k-1}$ be a sequence of Borel subsets of $\Omega $ . Then we have
The above lemma follows from Theorem 1.1 and [Reference Funano7, Theorem 3.4].
To prove Theorem 1.2, let us recall the Bishop–Gromov inequality in Riemannian geometry. See [Reference Funano8, Lemma 3.4] for the proof in the case of convex domains in $\mathbb {R}^n$ .
Lemma 3.3 (Bishop–Gromov inequality)
Let $\Omega $ be a convex domain in $\mathbb {R}^n$ . Then, for any $x\in \Omega $ and any $R>r>0$ , we have
In the proof of Theorem 1.2, we make use of a similar argument as in [Reference Funano6, Theorem 1.3].
Proof of Theorem 1.2
Let $R:=cn^2/\sqrt {\lambda _{k+1}(\Omega )}$ , where c is a positive number specified later. Suppose that $\Omega $ includes $k+1\ R$ -separated net $\{x_{\alpha }\}_{\alpha =0}^{k}$ in $\Omega $ . By Theorem 2.3, we have $\operatorname {Diam} (\Omega ) \leq c'n(k+1)/\sqrt {\lambda _{k+1}(\Omega )}$ for some universal constant $c'>0$ . Applying the Bishop–Gromov inequality, we have
for $c>c'$ . By Lemma 3.2, we obtain
For sufficiently large c, this is a contradiction.
Let $x_0, x_1,x_2,\ldots ,x_l$ be maximal R-separated points in $\Omega $ , where $l\leq k-1$ . By the maximality, we have $\Omega \subseteq \bigcup _{\alpha =0}^{l} B(x_{\alpha },R)$ . If $\{ \Omega _{\alpha } \}_{\alpha =0}^{l}$ is the Voronoi partition of $\Omega $ associated with $\{x_{\alpha }\}$ , then we have $\operatorname {Diam} (\Omega _{\alpha })\leq 2R$ . Theorem 2.2 thus yields $\lambda _1(\Omega _{\alpha })\gtrsim 1/R^2$ for each $\alpha $ . According to Proposition 2.1, we obtain
This completes the proof of the theorem.
Acknowledgment
The author would like to express many thanks to the anonymous referees for their helpful and useful comments.