No CrossRef data available.
Article contents
Centers of Artin groups defined on cones
Published online by Cambridge University Press: 15 November 2024
Abstract
We prove that the Center Conjecture passes to the Artin groups whose defining graphs are cones, if the conjecture holds for the Artin group defined on the set of the cone points. In particular, it holds for every Artin group whose defining graph has exactly one cone point.
Keywords
MSC classification
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 68 , Issue 1 , February 2025 , pp. 44 - 50
- Copyright
- © The Author(s), 2024. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.
References
Blufstein, M. A. and Paris, L., Parabolic subgroups inside parabolic subgroups of Artin groups, Proc. Amer. Math. Soc. 151(4) (2023), 1519–1526. doi:10.1090/proc/16289.Google Scholar
Bourbaki, N., Lie Groups and Lie Algebras. Chapters 4–6. Elements of Mathematics (Berlin) (Springer-Verlag, Berlin, 2002) Translated from the 1968 French original by Andrew Pressley. doi:10.1007/978-3-540-89394-3Google Scholar
Brieskorn, E. and Saito, K., Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245–271. doi:10.1007/BF01406235.CrossRefGoogle Scholar
Charney, R. and Morris-Wright, R., Artin groups of infinite type: trivial centers and acylindrical hyperbolicity, Proc. Amer. Math. Soc. 147(9) (2019), 3675–3689. doi:10.1090/proc/14503CrossRefGoogle Scholar
Charney, R. and Paris, L., Convexity of parabolic subgroups in Artin groups, Bull. Lond. Math. Soc. 46(6) (2014), 1248–1255. doi:10.1112/blms/bdu077CrossRefGoogle Scholar
Deligne, P., Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273–302. doi:10.1007/BF01406236.CrossRefGoogle Scholar
Godelle, E., On parabolic subgroups of Artin-Tits groups, J. Algebra 632 (2023), 520–534. doi:10.1016/j.jalgebra.2023.06.004CrossRefGoogle Scholar
Godelle, E. and Paris, L., Basic questions on Artin-Tits groups. In Configuration Spaces, Volume 14, (Ed. Norm, Pisa, 2012) of CRM Series. doi:10.1007/978-88-7642-431-1_13.Google Scholar
Godelle, E. and Paris, L.,
$K(\unicode{x03C0},1)$ and word problems for infinite type Artin-Tits groups, and applications to virtual braid groups, Math. Z. 272(3-4) (2012), 1339–1364. doi:10.1007/s00209-012-0989-9.CrossRefGoogle Scholar

Jankiewicz, K. and Schreve, K., The
$K(\unicode{x03C0},1)$-conjecture implies the center conjecture for Artin groups, J. Algebra 615 (2023), 455–463. doi:10.1016/j.jalgebra.2022.10.024CrossRefGoogle Scholar

Kato, M. and ichi Oguni, S., Acylindrical hyperbolicity and the centers of Artin groups that are not free of infinity (2024), 1–26. arXiv: 2406.09432 [math.GR]. https://arxiv.org/abs/2406.09432.Google Scholar
McCammond, J. and Sulway, R., Artin groups of Euclidean type, Invent. Math. 210(1) (2017), 231–282. doi:10.1007/s00222-017-0728-2.CrossRefGoogle Scholar
van der Lek, H.. Phd thesis, University of Nijmegen, Nijmegen, Netherlands, The homotopy type of complex hyperplane complements (1983).Google Scholar