Hostname: page-component-6587cd75c8-2cm9h Total loading time: 0 Render date: 2025-04-23T23:09:25.618Z Has data issue: false hasContentIssue false

Mechanical properties of pristine smectite clay minerals and clay–polymer hybrids studied by density functional theory

Published online by Cambridge University Press:  22 November 2024

Sanam Bashir
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 36 Bratislava, Slovakia
Daniel Tunega
Affiliation:
Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Peter-Jordan-Strasse 82b, A-1190 Wien, Austria
Eva Scholtzová*
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 36 Bratislava, Slovakia
*
Corresponding author: Eva Scholtzová; Email: [email protected]

Abstract

Recent years have seen significant interest in the mechanical properties of clay–polymer hybrids due to their suitability for possible application as sustainable materials in green chemistry. The objective of the present study was to investigate the mechanical properties of clay–polymer hybrids and their corresponding pristine smectite clay minerals. The density functional theory (DFT) method, employing the D3 scheme for corrections of dispersion interactions, was used to calculate elastic constants (Cij) of models of pristine smectites, particularly montmorillonite, beidellite, saponite, and hectorite, and their hybrids built on the polymer poly(2-methyl-2-oxazoline), PMeOx. Following that, the elastic moduli, encompassing the bulk modulus (KVRH), shear modulus (GVRH), Young’s modulus (EVRH), and Poisson’s ratio (ν), were calculated. The results revealed a reduction in elastic constants and elastic moduli following the intercalation of smectite clay minerals with the PMeOx polymer. The findings highlighted a distinctive ranking of mechanical properties among pristine smectite clay minerals and clay–polymer hybrids, with hectorite and its hybrid (Htr-PMeOx) demonstrating better performance compared with saponite, montmorillonite, and beidellite and their respective hybrids.

Type
Original Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adak, B., Butola, B.S., & Joshi, M. (2018). Effect of organoclay-type and clay-polyurethane interaction chemistry for tuning the morphology, gas barrier and mechanical properties of clay/polyurethane nanocomposites. Applied Clay Science, 161, 343353.CrossRefGoogle Scholar
Blöchl, P.E. (1994). Projector augmented-wave method. Physical Review B, 50, 17953.CrossRefGoogle ScholarPubMed
Brigatti, M.F., Galan, E., & Theng, B. (2006). Structures and mineralogy of clay minerals. Developments in Clay Science, 1, 1986.CrossRefGoogle Scholar
Carrier, B., Vandamme, M., Pellenq, R.J.-M., & Van Damme, H. (2014). Elastic properties of swelling clay particles at finite temperature upon hydration. Journal of Physical Chemistry C, 118, 89338943.CrossRefGoogle Scholar
Cheikh, D., Majdoub, H., & Darder, M. (2022). An overview of clay-polymer nanocomposites containing bioactive compounds for food packaging applications. Applied Clay Science, 216, 106335.CrossRefGoogle Scholar
Colombo, M.A., Díaz, F.R., Kodali, D., Rangari, V., Güven, O., & Moura, E.A. (2023). Influence of reinforcing efficiency of clay on the mechanical properties of poly (butylene terephthalate) nanocomposite. Ceramics, 6, 5873.CrossRefGoogle Scholar
Das, P., Manna, S., Behera, A.K., Shee, M., Basak, P., & Sharma, A.K. (2022). Current synthesis and characterization techniques for clay-based polymer nano-composites and its biomedical applications: a review. Environmental Research, 212, 113534.CrossRefGoogle ScholarPubMed
Drits, V.A., Guggenheim, S., Zviagina, B.B., & Kogure, T. (2012). Structures of the 2:1 layers of pyrophyllite and talc. Clays and Clay Minerals, 60, 574587.CrossRefGoogle Scholar
Ebrahimi, D., Pellenq, R.J.-M., & Whittle, A.J. (2012). Nanoscale elastic properties of montmorillonite upon water adsorption. Langmuir, 28, 1685516863.CrossRefGoogle ScholarPubMed
Glassner, M., Vergaelen, M., & Hoogenboom, R. (2018). Poly (2-oxazoline) s: a comprehensive overview of polymer structures and their physical properties. Polymer International, 67, 3245.CrossRefGoogle Scholar
Gribble, C., & Gribble, C. (1988). Physical properties of minerals. Rutley’s Elements of Mineralogy, 2646.Google Scholar
Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, 132.CrossRefGoogle ScholarPubMed
Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society A, 65, 349.CrossRefGoogle Scholar
Karataş, D., Tekin, A., Bahadori, F., & Çelik, M.S. (2017). Interaction of curcumin in a drug delivery system including a composite with poly (lactic-co-glycolic acid) and montmorillonite: a density functional theory and molecular dynamics study. Journal of Materials Chemistry B, 5, 80708082.CrossRefGoogle Scholar
Karippal, J.J., Narasimha Murthy, H., Rai, K., Sreejith, M., & Krishna, M. (2011). Study of mechanical properties of epoxy/glass/nanoclay hybrid composites. Journal of Composite Materials, 45, 18931899.CrossRefGoogle Scholar
Khostavan, S., Fazli, M., Ahangari, M.G., & Rostamiyan, Y. (2019). The effect of interaction between nanofillers and epoxy on mechanical and thermal properties of nanocomposites: theoretical prediction and experimental analysis. Advances in Polymer Technology, 2019, 110.CrossRefGoogle Scholar
Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54, 11169.CrossRefGoogle ScholarPubMed
Kumari, N., Mohan, C., & Negi, A. (2023). An investigative study on the structural, thermal and mechanical properties of clay-based PVC polymer composite films. Polymers, 15, 1922.CrossRefGoogle Scholar
Le Coeur, C., Lorthioir, C., Feoktystov, A., Wu, B., Volet, G., & Amiel, C. (2021). Laponite/poly (2-methyl-2-oxazoline) hydrogels: interplay between local structure and rheological behaviour. Journal of Colloid and Interface Science, 582, 149158.CrossRefGoogle ScholarPubMed
Madejová, J., Barlog, M., Slaný, M., Bashir, S., Scholtzová, E., Tunega, D., & Jankovič, Ľ. (2023). Advanced materials based on montmorillonite modified with poly (ethylenimine) and poly (2-methyl-2-oxazoline): experimental and DFT study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 659, 130784.CrossRefGoogle Scholar
Masood, F., ul Ain, N., Habib, S., Alam, A., Yasin, T., Hameed, A., & Farooq, M. (2022). Preparation, characterization, and evaluation of multifunctional properties of PVA/metal oxide sepiolite nanocomposite membranes for water cleanup. Materials Today Communications, 31, 103620.CrossRefGoogle Scholar
Mekhzoum, M.E.M., Raji, M., Rodrigue, D., & Bouhfid, R. (2020). The effect of benzothiazolium surfactant modified montmorillonite content on the properties of polyamide 6 nanocomposites. Applied Clay Science, 185, 105417.CrossRefGoogle Scholar
Militzer, B., Wenk, H.-R., Stackhouse, S., & Stixrude, L. (2011). First-principles calculation of the elastic moduli of sheet silicates and their application to shale anisotropy. American Mineralogist, 96, 125137.CrossRefGoogle Scholar
Monjarás-Ávila, A.J., Sanchez-Olivares, G., Calderas, F., Moreno, L., Zamarripa-Calderón, J.-E., Cuevas-Suárez, C.E., & Rivera-Gonzaga, A. (2020). Sodium montmorillonite concentration effect on Bis-GMA/TEGDMA resin to prepare clay polymer nanocomposites for dental applications. Applied Clay Science, 196, 105755.CrossRefGoogle Scholar
Moreno-Rodríguez, D., Jankovič, Ľ., Scholtzová, E., & Tunega, D. (2021). Stability of atrazine–smectite intercalates: density functional theory and experimental study. Minerals, 11, 554.CrossRefGoogle Scholar
Mukhopadhyay, R., Bhaduri, D., Sarkar, B., Rusmin, R., Hou, D., Khanam, R., Sarkar, S., Biswas, J.K., Vithanage, M., & Bhatnagar, A. (2020). Clay–polymer nanocomposites: progress and challenges for use in sustainable water treatment. Journal of Hazardous Materials, 383, 121125.CrossRefGoogle ScholarPubMed
Nielsen, O., & Martin, R.M. (1983). First-principles calculation of stress. Physical Review Letters, 50, 697.CrossRefGoogle Scholar
Niu, J., Zhang, W., Li, S., Yan, W., Hao, X., Wang, Z., Wang, F., Zhang, G., & Guan, G. (2021). An electroactive montmorillonite/polyaniline nanocomposite film: superfast ion transport and ultra-affinity ion recognition for rapid and selective separation of Pb2+ ions. Chemical Engineering Journal, 413, 127750.CrossRefGoogle Scholar
Ozkose, U.U., Altinkok, C., Yilmaz, O., Alpturk, O., & Tasdelen, M.A. (2017). In-situ preparation of poly (2-ethyl-2-oxazoline)/clay nanocomposites via living cationic ring-opening polymerization. European Polymer Journal, 88, 586593.CrossRefGoogle Scholar
Perdew, J.P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865.CrossRefGoogle ScholarPubMed
Platen, M., Mathieu, E., Lück, S., Schubel, R., Jordan, R., & Pautot, S. (2015). Poly (2-oxazoline)-based microgel particles for neuronal cell culture. Biomacromolecules, 16, 15161524.CrossRefGoogle ScholarPubMed
Rettler, E.F.J., Kranenburg, J.M., Lambermont-Thijs, H.M., Hoogenboom, R., & Schubert, U.S. (2010). Thermal, mechanical, and surface properties of poly (2-N-alkyl-2-oxazoline) s. Macromolecular Chemistry and Physics, 211, 24432448.CrossRefGoogle Scholar
Sato, H., Ono, K., Johnston, C.T., & Yamagishi, A. (2005). First-principles studies on the elastic constants of a 1:1 layered kaolinite mineral. American Mineralogist, 90, 18241826.CrossRefGoogle Scholar
Scholtzová, E., & Tunega, D. (2020). Prediction of mechanical properties of grafted kaolinite – a DFT study. Applied Clay Science, 193, 105692.CrossRefGoogle Scholar
Scholtzová, E., Tunega, D., & Speziale, S. (2015). Mechanical properties of ettringite and thaumasite – DFT and experimental study. Cement and Concrete Research, 77, 915.CrossRefGoogle Scholar
Sharma, A., & Devi, M. (2022). A review on multiscale modelling and simulation for polymer nanocomposites. https://www.preprints.org/manuscript/202202.0213/v1CrossRefGoogle Scholar
Sun, W., Wang, L., Wang, Y. (2017). Mechanical properties of rock materials with related to mineralogical characteristics and grain size through experimental investigation: a comprehensive review. Frontiers of Structural and Civil Engineering, 11, 322328.CrossRefGoogle Scholar
Trachsel, L., Zenobi-Wong, M., Benetti, E.M. (2021). The role of poly (2-alkyl-2-oxazoline) s in hydrogels and biofabrication. Biomaterials Science, 9, 28742886.CrossRefGoogle Scholar
Tsipursky, S.I., & Drits, V. (1984). The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction. Clay Minerals, 19, 177193.CrossRefGoogle Scholar
Villar, M., Gómez-Espina, R., & Gutiérrez-Nebot, L. (2012). Basal spacings of smectite in compacted bentonite. Applied Clay Science, 65, 95105.CrossRefGoogle Scholar
Wang, L., Min, F., Chen, J., Zhang, L., Liu, L., & Liu, C. (2023). Flocculation performance and mechanism of P (DMDAAC-AM) on clay mineral layer: insights from DFT calculation and experiment. Applied Surface Science, 607, 155089.CrossRefGoogle Scholar
Wang, Y., Li, X., Qin, Y., Zhang, D., Song, Z., & Ding, S. (2021). Local electric field effect of montmorillonite in solid polymer electrolytes for lithium metal batteries. Nano Energy, 90, 106490.CrossRefGoogle Scholar
Wang, Z., Wang, H., & Cates, M.E. (1998). Elastic properties of solid clays, SEG Technical Program Expanded Abstracts 1998. Society of Exploration Geophysicists, pp. 10451048.Google Scholar
Zare, Y., Fasihi, M., & Rhee, K.Y. (2017). Efficiency of stress transfer between polymer matrix and nanoplatelets in clay/polymer nanocomposites. Applied Clay Science, 143, 265272.CrossRefGoogle Scholar
Zhang, G., Wu, T., Lin, W., Tan, Y., Chen, R., Huang, Z., Yin, X., & Qu, J. (2017). Preparation of polymer/clay nanocomposites via melt intercalation under continuous elongation flow. Composites Science and Technology, 145, 157164.CrossRefGoogle Scholar
Zhang, L., Min, F., Chen, J., Liu, C., & Wang, T. (2022). New insights into the interaction between monomers from acrylamide-based polymeric flocculants and montmorillonite: a DFT study. Journal of Molecular Liquids, 365, 120171.CrossRefGoogle Scholar
Zhao, J., Cao, Y., Wang, L., Zhang, H.-J., & He, M.-C. (2021). Investigation on atomic structure and mechanical property of Na-and Mg-Montmorillonite under high pressure by first-principles calculations. Minerals, 11, 613.CrossRefGoogle Scholar
Zheng, Y., & Zaoui, A. (2018). Mechanical behavior in hydrated Na-montmorillonite clay. Physica A: Statistical Mechanics and its Applications, 505, 582590.CrossRefGoogle Scholar