1 Introduction
The notion of symmetry-protected topological phases was introduced by Gu and Wen [Reference Gu and WenGW]. It is defined as follows: We consider the set of all Hamiltonians with some symmetry which have a unique gapped ground state in the bulk and can be smoothly deformed into a common trivial gapped Hamiltonian without closing the gap. We say two such Hamiltonians are equivalent if they can be smoothly deformed into each other without breaking the symmetry. We call an equivalence class of this classification a symmetry-protected topological (SPT) phase. Based on tensor network or quantum field theory analysis [Reference Chen, Gu, Liu and WenCGLW, Reference Molnar, Ge, Schuch and CiracMGSC], it is conjectured that SPT phases with on-site finite group G symmetry for $\nu $-dimensional quantum spin systems have an $H^{\nu +1}(G,{\mathbb T})$-valued invariant. We proved that conjecture affirmatively in [Reference OgataO1] for $\nu =1$. In this paper, we show that the conjecture is also true for $\nu =2$.
We start by summarising the standard setup of $2$-dimensional quantum spin systems on the $2$-dimensional lattice ${\mathbb Z}^{2}$ [Reference Bratteli and RobinsonBR1, Reference Bratteli and RobinsonBR2]. We will freely use the basic notation in Section A. Throughout this paper, we fix some $2\le d\in \mathbb {N}$. We denote the algebra of $d\times d$ matrices by $\mathop {\mathrm {M}}\nolimits _{d}$.
For each subset $\Gamma $ of ${\mathbb Z}^2$, we denote the set of all finite subsets in $\Gamma $ by ${\mathfrak S}_{\Gamma }$. We introduce the Euclidean metric on ${\mathbb Z}^2$, inherited from ${\mathbb R}^2$. We denote by $\mathrm {d}(S_1,S_2)$ the distance between $S_1,S_2\subset {\mathbb Z}^2$. For a subset $\Gamma $ of ${\mathbb Z}^2$ and $r\in {\mathbb R}_{\ge 0}$, $\hat \Gamma {(r)}$ denotes all the points in ${\mathbb R}^{2}$ whose distance from $\Gamma $ is less than or equal to r. We also set $\Gamma (r):=\hat \Gamma {(r)}\cap {\mathbb Z}^{2}$. When we take a complement of $\Gamma \subset {\mathbb Z}^{2}$, it means $\Gamma ^{c}:={\mathbb Z}^{2}\setminus \Gamma $. For each $n\in {\mathbb N}$, we denote $[-n,n]^2\cap {\mathbb Z}^2$ by $\Lambda _n$.
For each $z\in {\mathbb Z}^2$, let ${\mathcal A}_{\{z\}}$ be an isomorphic copy of $\mathop {\mathrm {M}}\nolimits _{d}$, and for any finite subset $\Lambda \subset {\mathbb Z}^2$, we set ${\mathcal A}_{\Lambda } = \bigotimes _{z\in \Lambda }{\mathcal A}_{\{z\}}$. For finite $\Lambda $, the algebra ${\mathcal A}_{\Lambda } $ can be regarded as the set of all bounded operators acting on the Hilbert space $\bigotimes _{z\in \Lambda }{{\mathbb C}}^{d}$. We use this identification freely. If $\Lambda _1\subset \Lambda _2$, the algebra ${\mathcal A}_{\Lambda _1}$ is naturally embedded in ${\mathcal A}_{\Lambda _2}$ by tensoring its elements with the identity. For an infinite subset $\Gamma \subset {\mathbb Z}^{2}$, ${\mathcal A}_{\Gamma }$ is given as the inductive limit of the algebras ${\mathcal A}_{\Lambda }$ with $\Lambda \in {\mathfrak S}_{\Gamma }$. We call ${\mathcal A}_{\Gamma }$ the quantum spin system on $\Gamma $. For simplicity, we denote the $2$-dimensional quantum spin system ${\mathcal A}_{{\mathbb Z}^{2}}$ by ${\mathcal A}$. We also set ${\mathcal A}_{\text {loc}}:=\bigcup _{\Lambda \in {\mathfrak S}_{{\mathbb Z}^{2}}}{\mathcal A}_{\Lambda } $. For a subset $\Gamma _1$ of $\Gamma \subset {\mathbb Z}^{2}$, the algebra ${\mathcal A}_{\Gamma _1}$ can be regarded as a subalgebra of ${\mathcal A}_{\Gamma }$. With this identification, for $A\in {\mathcal A}_{\Gamma _1}$ we occasionally use the same symbol A to denote $A\otimes \mathbb I_{{\mathcal A}_{\Gamma \setminus \Gamma _1}}\in {\mathcal A}_\Gamma $. Similarly, an automorphism $\gamma $ on ${\mathcal A}_{\Gamma _1}$ can be naturally regarded as an automorphism $\gamma \otimes \mathop {\mathrm {id}}\nolimits _{{\mathcal A}_{\Gamma \setminus \Gamma _1}}$ on ${\mathcal A}_{\Gamma }$. We use this identification freely, and with a slight abuse of notation we occasionally denote $\gamma \otimes \mathop {\mathrm {id}}\nolimits _{{\mathcal A}_{\Gamma \setminus \Gamma _1}}$ by $\gamma $. Similarly, for disjoint $\Gamma _-,\Gamma _+\subset {\mathbb Z}^{2}$ and $\alpha _\pm \in \mathop {\mathrm {Aut}}\nolimits {\mathcal A}_{\Gamma \pm }$, we occasionally write $\alpha _-\otimes \alpha _+$ to denote $\left ( \alpha _-\otimes \mathop {\mathrm {id}}\nolimits _{\Gamma _-^c}\right ) \left ( \alpha _+\otimes \mathop {\mathrm {id}}\nolimits _{\Gamma _+^c}\right )$, under the given identification.
Throughout this paper we fix a finite group G and a unitary representation U on ${\mathbb C}^{d}$. Let $\Gamma \subset {\mathbb Z}^{2}$ be a nonempty subset. For each $g\in G$, there exists a unique automorphism $\beta ^{\Gamma }_g$ on ${\mathcal A}_{\Gamma }$ such that
for any finite subset I of $\Gamma $. We call the group homomorphism $\beta ^{\Gamma }: G\to \mathop {\mathrm {Aut}}\nolimits {\mathcal A}_{\Gamma }$ the on-site action of G on ${\mathcal A}_{\Gamma }$ given by U. For simplicity, we denote $\beta ^{{\mathbb Z}^{2}}_{g}$ by $\beta _{g}$.
A mathematical model of a quantum spin system is fully specified by its interaction $\Phi $. A uniformly bounded interaction on ${\mathcal A}$ is a map $\Phi : {\mathfrak S}_{{\mathbb Z}^{2}}\to {\mathcal A}_{\text {loc}}$ such that
and
It is of finite range, with interaction length less than or equal to $R\in \mathbb {N}$ if $\Phi (X)=0$ for any $X\in {\mathfrak S}_{{\mathbb Z}^{2}}$ whose diameter is larger than R. An on-site interaction – that is, an interaction with $\Phi (X)=0$ unless X consists of a single point – is said to be trivial. An interaction $\Phi $ is $\beta $-invariant if $\beta _g(\Phi (X))=\Phi (X)$ for any $X\in {\mathfrak S}_{{\mathbb Z}^{2}}$. For a uniformly bounded and finite-range interaction $\Phi $ and $\Lambda \in {\mathfrak S}_{{\mathbb Z}^{2}}$, define the local Hamiltonian
and denote the dynamics
By the uniform boundedness and finite-rangeness of $\Phi $, for each $A\in {\mathcal A}$ the following limit exists
which defines the dynamics $\tau ^{\Phi }$ on ${\mathcal A}$ [Reference Bratteli and RobinsonBR2]. For a uniformly bounded and finite-range interaction $\Phi $, a state $\varphi $ on ${\mathcal A}$ is called a $\tau ^{\Phi }$-ground state if the inequality $ -i\,\varphi (A^*{\delta _{\Phi }}(A))\ge 0 $ holds for any element A in the domain ${\mathcal D}({\delta _{\Phi }})$ of the generator ${\delta _\Phi }$. Let $\varphi $ be a $\tau ^\Phi $-ground state, with a Gelfand–Naimark–Segal (GNS) triple $\left ({\mathcal H}_\varphi ,\pi _\varphi ,\Omega _\varphi \right )$. Then there exists a unique positive operator $H_{\varphi ,\Phi }$ on ${\mathcal H}_\varphi $ such that $e^{itH_{\varphi ,\Phi }}\pi _\varphi (A)\Omega _\varphi =\pi _\varphi \left (\tau ^t_\Phi (A)\right )\Omega _\varphi $, for all $A\in {\mathcal A}$ and $t\in \mathbb R$. We call this $H_{\varphi ,\Phi }$ the bulk Hamiltonian associated with $\varphi $.
Definition 1.1. We say that an interaction $\Phi $ has a unique gapped ground state if (i) the $\tau ^\Phi $-ground state, which we denote as $\omega _{\Phi }$, is unique and (ii) there exists a $\gamma>0$ such that $\sigma \left (H_{\omega _{\Phi },\Phi }\right )\setminus \{0\}\subset [\gamma ,\infty )$, where $\sigma \left (H_{\omega _{\Phi },\Phi }\right )$ is the spectrum of $H_{\omega _{\Phi },\Phi }$. We denote by ${\mathcal P}_{UG} $ the set of all uniformly bounded finite-range interactions with unique gapped ground state. We denote by ${\mathcal P}_{UG\beta }$ the set of all uniformly bounded finite-range $\beta $-invariant interactions with unique gapped ground state.
In this paper we consider a classification problem of a subset of ${\mathcal P}_{UG\beta }$, models with short-range entanglement. To describe the models with short-range entanglement, we need to explain the classification problem of unique gapped ground-state phases without symmetry. For $\Gamma \subset {\mathbb Z}^{2}$, we denote by $\Pi _{\Gamma }:{\mathcal A}\to {\mathcal A}_{\Gamma }$ the conditional expectation with respect to the trace state. Let $f:(0,\infty )\to (0,\infty )$ be a continuous decreasing function with $\lim _{t\to \infty }f(t)=0$. For each $A\in {\mathcal A}$, define
We denote by ${\mathcal D}_f$ the set of all $A\in {\mathcal A}$ such that $\left \lVert A\right \rVert _f<\infty $.
The classification of unique gapped ground-state phases ${\mathcal P}_{UG} $ without symmetry is the following:
Definition 1.2. Two interactions $\Phi _0,\Phi _1\in {\mathcal P}_{UG} $ are equivalent if there is a path of interactions $\Phi : [0,1]\to {\mathcal P}_{UG} $ satisfying the following:
1. $\Phi (0)=\Phi _0$ and $\Phi (1)=\Phi _1$.
2. For each $X\in {\mathfrak S}_{{\mathbb Z}^2}$, the map $[0,1]\ni s\to \Phi (X;s)\in {\mathcal A}_{X}$ is $C^1$. We denote by $\dot {\Phi }(X;s)$ the corresponding derivatives. The interaction obtained by differentiation is denoted by $\dot \Phi (s)$, for each $s\in [0,1]$.
3. There is a number $R\in \mathbb {N}$ such that $X \in {\mathfrak S}_{{\mathbb Z}^2}$ and $\mathop {\mathrm {diam}}\nolimits {X}\ge R$ imply $\Phi (X;s)=0$, for all $s\in [0,1]$.
4. Interactions are bounded as follows:
(1.8)$$ \begin{align} C_b^{\Phi}:=\sup_{s\in\left[0,1\right]}\sup_{X\in {\mathfrak S}_{{\mathbb Z}^2}} \left ( \left \lVert \Phi\left ( X;s\right ) \right \rVert+\left \lVert \dot{\Phi} \left ( X;s\right ) \right \rVert \right )<\infty. \end{align} $$5. Setting
(1.9)$$ \begin{align} b(\varepsilon):=\sup_{Z\in{\mathfrak S}_{{\mathbb Z}^2}} \sup_{s,s_0 \in\left[0,1\right],0<\left \lvert s-s_0\right \rvert<\varepsilon} \left \lVert \frac{\Phi(Z;s)-\Phi(Z;s_0)}{s-s_0}-\dot{\Phi}(Z;s_0) \right \rVert \end{align} $$for each $\varepsilon>0$, we have $\lim _{\varepsilon \to 0} b(\varepsilon )=0$.6. There exists a $\gamma>0$ such that $\sigma \left (H_{\omega _{\Phi (s)},\Phi (s)}\right )\setminus \{0\}\subset [\gamma ,\infty )$ for all $s\in [0,1]$, where $\sigma \left (H_{\omega _{\Phi (s)},\Phi (s)}\right )$ is the spectrum of $H_{\omega _{\Phi (s)},\Phi (s)}$.
7. There exists $0<\eta <1$ satisfying the following: Set $\zeta (t):=e^{-t^{ \eta }}$. Then for each $A\in {\mathcal D}_\zeta $, $\omega _{\Phi (s)}(A)$ is differentiable with respect to s, and there is a constant $C_\zeta $ such that
(1.10)$$ \begin{align} \left \lvert \frac{d}{ds}\omega_{\Phi(s)}(A) \right \rvert \le C_\zeta\left \lVert A\right \rVert_\zeta, \end{align} $$for any $A\in {\mathcal D}_\zeta $. (Recall definition (1.7)).
We write $\Phi _0\sim \Phi _1$ if $\Phi _0$ and $\Phi _1$ are equivalent. If $\Phi _0,\Phi _1\in {\mathcal P}_{UG\beta }$ and we can take the path in ${\mathcal P}_{UG\beta }$ – that is, so that $\beta _g\left ( \Phi (X;s)\right )=\Phi (X;s)$, $g\in G$, for all $s\in [0,1]$ – then we say $\Phi _0$ and $\Phi _1$ are $\beta $-equivalent and write $\Phi _0\sim _\beta \Phi _1$.
The reason we require these conditions is that we rely on the result in [Reference Moon and OgataMO]. The object we classify in this paper is the following:
Definition 1.3. Fix a trivial interaction $\Phi _0\in {\mathcal P}_{UG} $. We denote by ${\mathcal P}_{SL\beta }$ the set of all $\Phi \in {\mathcal P}_{UG\beta }$ such that $\Phi \sim \Phi _0$. Connected components of ${\mathcal P}_{SL\beta }$ with respect to $\sim _\beta $ are the SPT phases.
Because we have $\Phi _0\sim \tilde \Phi _0$ for any trivial $\Phi _0,\tilde \Phi _{0}\in {\mathcal P}_{UG} $, the set ${\mathcal P}_{SL\beta }$ does not depend on the choice of $\Phi _0$.
Remark 1.4. From the automorphic equivalence (Theorem 5.1), $\Phi \sim \Phi _0$ means that the ground state of $\Phi $ has a short-range entanglement. This is because the automorphisms in Theorem 5.1 can be regarded as a version of a quantum circuit with finite depth, which is regarded as a quantum circuit that does not create long-range entanglement [Reference Bachmann and LangeBL].
The main result of this paper is as follows:
Theorem 1.5. There is an $H^3(G,{\mathbb T})$-valued index on ${\mathcal P}_{SL\beta }$, which is an invariant of the classification $\sim _\beta $ of ${\mathcal P}_{SL\beta }$.
The paper is organised as follows. In Section 2, we define the $H^{3}(G,{\mathbb T})$-valued index for a class of states which are created from a fixed product state via ‘factorisable’ automorphisms, satisfying some additional condition. This additional condition is the existence of the set of automorphisms which (i) do not move the state and (ii) are almost like $\beta $-action restricted to the upper half-plane, except for some $1$-dimensional perturbation. In Section 3, we show that the existence of such set of automorphisms is guaranteed in a suitable situation. Furthermore, in Section 4 we show the stability of the index – that is, a suitably $\beta $-invariant automorphism does not change this index. Finally, in Section 5 we show our main theorem, Theorem 1.5, and that in our setting of Theorem 1.5, all the conditions required in Sections 2, 3 and 4 are satisfied. Although the index is defined in terms of GNS representations, in some good situation, we can calculate it without going through GNS representation; this is shown in Section 6. Reviews of this article can be found in [Reference OgataO3, Reference OgataO4].
2 The $H^{3}(G,{\mathbb T})$-valued index in $2$-dimensional systems
In this section, we associate an $H^{3}(G,{\mathbb T})$-index for some class of states. It will turn out later that this class includes SPT phases. For a nontrivial example of this index, see [Reference OgataO3]. It is also shown there that if a state is of product form of two states on half-planes, then our index is trivial. From the construction to follow, one can easily see that the group structure of $H^{3}(G,{\mathbb T})$, which is a simple pointwise multiplication, shows up when we tensor two systems.
2.1 An overview
We consider states of the form $\omega =\omega _{0}\circ \alpha $, where $\omega _{0}$ is a pure infinite tensor product state (see definition (2.18)) and $\alpha $ an automorphism satisfying some factorisation property (2.8). In equation (2.8), $\alpha _{L}, \alpha _{R}$ are automorphisms localised to the left and right infinite planes $H_{L}, H_{R}$, and $\Theta $ is localised in $\left ( C_{\theta }\right )^{c}$, where $C_{\theta }$ is defined by definition (2.2). We then have $\omega \simeq \left ( \omega _{L}\alpha _{L}\otimes \omega _{R}\alpha _{R}\right )\circ \Theta $ with pure states $\omega _{L}, \omega _{R}$ on the left and right infinite planes. We further assume that the effective excitation caused by $( \beta _{g}^{U})^{-1}$ (see formula (2.5)) on $\omega $ is localised around the x-axis, in the sense that for any $0<\theta <\frac \pi 2$, there are automorphisms $\eta _{g}^{L}, \eta _{g}^{R}$ localised in $C_{\theta }\cap H_{L}, C_{\theta }\cap H_{R}$ such that $\omega \circ ( \beta _{g}^{U})^{-1}$ is equivalent to $\omega \circ (\eta _{g}^{L}\otimes \eta _{g}^{R} )$. This corresponds to thinking of ${\mathcal T}(\theta , (\tilde \beta _g) )$ (definition (2.22)) and $\mathop {\mathrm {IG}}\nolimits (\omega ,\theta )$ (definition (2.24)). Setting $\gamma _{g}^{R}:=\eta _{g}^{R}\beta _{g}^{UR}, \gamma _{g}^{L}:=\eta _{g}^{L}\beta _{g}^{UL}$, with $\beta _{g}^{UR}, \beta _{g}^{UL}$ in formula (2.5), the condition given is $\omega \simeq \omega \circ ( \gamma _{g}^{L}\otimes \gamma _{g}^{R} )$. Repeated use of this formula gives us $\omega \simeq \omega \circ ( \gamma _{g}^{L}\gamma _{h}^{L}(\gamma _{gh}^{L} )^{-1} \otimes \gamma _{g}^{R}\gamma _{h}^{R} (\gamma _{gh}^{R} )^{-1} )$. Substituting the factorisation of $\omega $, we then have
However, because conjugation by $\beta _g^U$ does not change the support of automorphisms, we see that this combination $\gamma _{g}^{R}\gamma _{h}^{R}(\gamma _{gh}^{R} )^{-1}$ is localised in $C_{\theta }\cap H_{R}$. As a result, $\gamma _{g}^{R}\gamma _{h}^{R}(\gamma _{gh}^{R})^{-1}$ – and also $\gamma _{g}^{L}\gamma _{h}^{L}(\gamma _{gh}^{L} )^{-1}$ – commutes with $\Theta $. Letting them commute, we obtain
from which we can conclude $ \omega _{R}\alpha _{R}\simeq \omega _{R}\alpha _{R} \gamma _{g}^{R}\gamma _{h}^{R}(\gamma _{gh}^{R})^{-1}$. This means that $\alpha _{R} \gamma _{g}^{R}\gamma _{h}^{R}(\gamma _{gh}^{R})^{-1}\alpha _{R}^{-1}$ is implementable by some unitary $u(g,h)$ unitary in the GNS representation $\pi _{R}$ of $\omega _{R}$ (equation (2.19); see equation (2.27)). On the other hand, substituting the factorisation of $\omega $ to $\omega \simeq \omega \circ ( \gamma _{g}^{L}\otimes \gamma _{g}^{R} )$ implies
from which we can derive the implementability of $\Theta \circ ( \gamma _{g}^{L}\otimes \gamma _{g}^{R} )\circ \Theta ^{-1}$ in the representation $\pi _{L}\alpha _{L}\otimes \pi _{R}\alpha _{R}$ by some unitary $W_{g}$ (see equation (2.26)). Using the definitions of $W_{g}$ and $u(g,h)$, we can see that they satisfy some nontrivial relation (2.52), with some $U(1)$-phase $c_{R}(g,h.k)$. In fact, this is quite a similar situation to that of cocycle actions [Reference JonesJ]. As in [Reference JonesJ], we can show that this $U(1)$-phase $c_{R}(g,h.k)$ is a $3$-cocycle and obtain an $H^{3}(G, {\mathbb T})$-index. The rest of this section is devoted to the proof that our index is independent of the choice of objects we introduced to define it. All of them follow from the fact that the difference of $W_{g}$ and $u(g,h)$ caused by the different choice of objects can be implemented by some unitary, and the proof is rather straightforward.
2.2 Definitions and the setting
For $0<\theta <\frac \pi 2$, a (double) cone $C_\theta $ is defined by
Note that it consists of the left part $x\le -1$ and the right part $0\le x$. For $0<\theta _1<\theta _2\le \frac \pi 2$, we use the notation ${\mathcal C}_{\left (\theta _1,\theta _2\right ]}:=C_{\theta _2}\setminus C_{\theta _1}$ and ${\mathcal C}_{\left [0,\theta _1\right ]}:=C_{\theta _1}$. Left, right, upper and lower half-planes are denoted by $H_L$, $H_R$, $H_U$ and $H_D$:
We use the notation
For each subset S of ${\mathbb Z}^2$, we set
We occasionally write ${\mathcal A}_{S,\sigma }, {\mathcal A}_{S,\zeta }, {\mathcal A}_{S,\sigma ,\zeta }$ to denote ${\mathcal A}_{S_{\sigma }}, {\mathcal A}_{S_{\zeta }}, {\mathcal A}_{S_{\sigma \zeta }}$. For an automorphism $\alpha $ on ${\mathcal A}$ and $0<\theta <\frac {\pi }2$, we denote by ${\mathfrak D}^{\theta }_\alpha $ a set of all triples $(\alpha _L,\alpha _R,\Theta )$ with
decomposing $\alpha $ as
For $(\alpha _L,\alpha _R,\Theta )\in {\mathfrak D}^{(\theta )}_\alpha $, we set
The class of automorphisms which allow such decompositions for any directions is denoted by
Furthermore, for each
we consider decompositions of $\alpha \in \mathop {\mathrm {Aut}}\nolimits ({\mathcal A})$ such that
with
for
The class of automorphisms on ${\mathcal A}$ which allow such decompositions for any directions $\theta _{0.8}, \theta _1, \theta _{1.2}, \theta _{1.8},\theta _2,\theta _{2.2}, \theta _{2.8},\theta _3,\theta _{3.2}$ (satisfying formula (2.11)) is denoted by $\mathop {\mathrm {SQAut}}\nolimits ({\mathcal A})$. Note that $\mathop {\mathrm {SQAut}}\nolimits ({\mathcal A})\subset \mathop {\mathrm {QAut}}\nolimits ({\mathcal A})$. The set of all $\alpha \in \mathop {\mathrm {SQAut}}\nolimits ({\mathcal A})$ with each of $\alpha _{I}$ in the decompositions required to commute with $\beta _g^{U}$, $g\in G$, is denoted by $\mathop {\mathrm {GSQAut}}\nolimits ({\mathcal A})$:
We also define
In Section 5, we will see that quasilocal automorphisms corresponding to paths in symmetric gapped phases belong to the following set:
We fix a reference state $\omega _0$ as follows: We fix a unit vector ${\xi _x}\in {\mathbb C}^d$ and let $\rho _{\xi _x}$ be the vector state on $\mathop {\mathrm {M}}\nolimits _d$ given by ${\xi _x}$, for each $x\in {\mathbb Z}^2$. Then our reference state $\omega _0$ is given by
Throughout this section this $\omega _0$ is fixed. Let $({\mathcal H}_0,\pi _0,\Omega _0)$ be a GNS triple of $\omega _0$. Because of the product structure of $\omega _0$, it is decomposed as
where $({\mathcal H}_\sigma ,\pi _\sigma ,\Omega _\sigma )$ is a GNS triple of $\omega _\sigma :=\omega _0\rvert _{{\mathcal A}_{H_\sigma }}$ for $\sigma =L,R$. As $\omega _0\rvert _{{\mathcal A}_{H_\sigma }}$ is pure, $\pi _\sigma $ is irreducible. What we consider in this section is the set of states created via elements in $\mathop {\mathrm {QAut}}\nolimits ({\mathcal A})$ from our reference state $\omega _0$:
Because any pure product states can be transformed to each other via an automorphism of product form $\tilde \alpha =\bigotimes _{x\in {\mathbb Z}^{2}}\tilde \alpha _{x}$, and $\tilde \alpha \alpha $ belongs to $\mathop {\mathrm {QAut}}\nolimits ({\mathcal A})$ for any $\alpha \in \mathop {\mathrm {QAut}}\nolimits ({\mathcal A})$, $\mathop {\mathcal {SL}}\nolimits $ does not depend on the choice of $\omega _0$. For each $\omega \in \mathop {\mathcal {SL}}\nolimits $, we set
By the definition of $\mathop {\mathcal {SL}}\nolimits $, $\mathop {\mathrm {EAut}}\nolimits (\omega )$ is not empty.
For $0<\theta <\frac \pi 2$ and a set of automorphisms $\left (\tilde \beta _g\right )_{g\in G}\subset \mathop {\mathrm {Aut}}\nolimits ({{\mathcal A}})$, we introduce a set
In a word, it is a set of decompositions of $\tilde \beta _g\circ ( \beta _g^{U})^{-1}$ into tensors of $\mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{( C_\theta )_L} ), \mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{( C_\theta )_R} )$ modulo inner automorphisms. For $(\eta _{g}^\sigma )_{g\in G,\, \sigma =L,R }\in {\mathcal T}(\theta , (\tilde \beta _g ))$, we set
The following set of automorphisms is the key ingredient for the definition of our index: For $\omega \in \mathop {\mathcal {SL}}\nolimits $ and $0<\theta <\frac \pi 2$, we set
We also set
In this section we associate some third cohomology $h(\omega )$ for each $\omega \in \mathop {\mathcal {SL}}\nolimits $ with $\mathop {\mathrm {IG}}\nolimits (\omega )\neq \emptyset $.
2.3 Derivation of elements in $Z^3(G,{\mathbb T})$
In this subsection, we derive $3$-cocycles out of $\omega , \alpha , \theta , (\tilde \beta _g ), (\eta _{g}^\sigma ), (\alpha _L,\alpha _R,\Theta )$.
Lemma 2.1. Set $\omega \in \mathop {\mathcal {SL}}\nolimits , \alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega ), 0<\theta <\frac \pi 2, (\tilde \beta _g)\in \mathop {\mathrm {IG}}\nolimits \left (\omega ,\theta \right ), (\eta _{g}^\sigma )\in {\mathcal T}(\theta , (\tilde \beta _g)), (\alpha _L,\alpha _R,\Theta )\in {\mathfrak D}^{\theta }_\alpha $. Then the following hold:
(i) There are unitaries $W_g$, $g\in G$, on ${\mathcal H}_0$ such that
(2.26)$$ \begin{align} \mathop{\mathrm{Ad}}\nolimits( W_g)\circ\pi_0 =\pi_0\circ\alpha_0\circ\Theta\circ\eta_g\beta_g^U\circ\Theta^{-1}\circ\alpha_0^{-1},\quad g\in G, \end{align} $$with the notation of definitions (2.9) and (2.23).(ii) There exists a unitary $u_\sigma (g,h)$ on ${\mathcal H}_{\sigma }$, for each $\sigma =L,R$ and for $g,h\in G$, such that
(2.27)$$ \begin{align} \mathop{\mathrm{Ad}}\nolimits\left ( u_\sigma(g,h)\right )\circ\pi_\sigma =\pi_\sigma\circ\alpha_\sigma\circ\eta_g^\sigma\beta_g^{\sigma U} \eta_h^\sigma\left (\beta_g^{\sigma U}\right )^{-1}\left ( \eta_{gh}^\sigma\right )^{-1} \circ\alpha_\sigma^{-1} \end{align} $$and(2.28)$$ \begin{align} \mathop{\mathrm{Ad}}\nolimits\left ( u_L(g,h)\otimes u_R(g,h)\right )\pi_0 =\pi_0\circ\alpha_0\circ\eta_g\beta_g^U\eta_h\left ( \beta_g^U\right )^{-1}\left (\eta_{gh}\right )^{-1} \circ\alpha_0^{-1}. \end{align} $$Furthermore, $u_{\sigma }(g,h)$ commutes with any element of $ \pi _\sigma \circ \alpha _\sigma \left ( {\mathcal A}_{\left ( \left ( C_\theta \right )^c\right )_\sigma }\right )$.
Definition 2.2. For $\omega \in \mathop {\mathcal {SL}}\nolimits , \alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega ), 0<\theta <\frac \pi 2, (\tilde \beta _g )\in \mathop {\mathrm {IG}}\nolimits (\omega ,\theta ), (\eta _{g}^\sigma)_{g\in G,\, \sigma =L,R }\in {\mathcal T}\left (\theta , \left (\tilde \beta _g\right )\right ), (\alpha _L,\alpha _R,\Theta )\in {\mathfrak D}^{\theta }_\alpha $, we denote by
the set of $( (W_g)_{g\in G}, (u_\sigma (g,h))_{g,h\in G,\,\sigma =L,R} )$ with $W_{g}\in {\mathcal U}({\mathcal H}_{0} )$ and $u_\sigma (g,h)\in {\mathcal U}\left ({\mathcal H}_{\sigma }\right )$ satisfying
and
(Here we used the notation of definition (2.9) and (2.23).) By Lemma 2.1, it is nonempty.
Proof. For a GNS triple $({\mathcal H}_0,\pi _0\circ \alpha ,\Omega _0)$ of $\omega =\omega _0\circ \alpha $, there are unitaries $\tilde W_g$ on ${\mathcal H}_0$ such that
because $\omega \circ \tilde \beta _g=\omega $.
Because $(\eta _{g}^\sigma )_{g\in G,\, \sigma =L,R }\in {\mathcal T}(\theta , (\tilde \beta _g ) )$ and $(\alpha _L,\alpha _R,\Theta )\in {\mathfrak D}^{\theta }_\alpha $, there are unitaries $v_g, V\in {\mathcal U}\left ({\mathcal A}\right )$ such that
Substituting these, we have
Therefore, setting $W_g:=\pi _0(V)^*( \pi _0\circ \alpha (v_g^*))\tilde W_g\pi _0(V)\in {\mathcal U}({\mathcal H}_0)$, we obtain equation (2.26).
Using equation (2.26), we have
Note that because conjugation by $\beta _g^U$ does not change the support of automorphisms, $\eta _g\beta _g^U\eta _h( \beta _g^{U} )^{-1} \eta _{gh}^{-1}$ belongs to $\mathop {\mathrm {Aut}}\nolimits ({\mathcal A}_{C_\theta } )$. On the other hand, $\Theta $ belongs to $\mathop {\mathrm {Aut}}\nolimits ({\mathcal A}_{ ( C_\theta )^{c}} )$. Therefore, they commute and we obtain
From this and the irreducibility of $\pi _R$, we see that $\mathop {\mathrm {Ad}}\nolimits ( W_gW_h W_{gh}^* )$ gives rise to a $*$-isomorphism $\tau $ on ${\mathcal B}({\mathcal H}_R)$. It is implemented by some unitary $u_R(g,h)$ on ${\mathcal H}_R$ by the Wigner theorem, and we obtain
for any $A\in {\mathcal A}_{H_{R}}$. Hence we obtain equation (2.27) for $\sigma =R$.
To see that $u_R(g,h)$ belongs to $\left ( \pi _R\circ \alpha _R\left ( {\mathcal A}_{\left ( \left ( C_\theta \right )^c\right )_R}\right )\right )'$, set $A\in {\mathcal A}_{\left ( \left ( C_\theta \right )^c\right )_R}$. Then because $\eta _g^R\beta _g^{R U} \eta _h^R (\beta _g^{R U} )^{-1} ( \eta _{gh}^R )^{-1}$ belongs to $\mathop {\mathrm {Aut}}\nolimits \left ( {\mathcal A}_{\left ( C_\theta \right )_R}\right )$, we have
This proves that $u_R(g,h)$ belongs to $\left ( \pi _R\circ \alpha _R\left ( {\mathcal A}_{\left ( \left ( C_\theta \right )^c\right )_R}\right )\right )'$. An analogous statement for $u_L(g,h)$ can be shown exactly the same way. The last statement of (ii), equation (2.28), is trivial from equation (2.27).
Lemma 2.3. Set $\omega \in \mathop {\mathcal {SL}}\nolimits , \alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega ), 0<\theta <\frac \pi 2, \left (\tilde \beta _g\right )\in \mathop {\mathrm {IG}}\nolimits \left (\omega ,\theta \right ), (\eta _{g}^\sigma )\in {\mathcal T}(\theta , (\tilde \beta _g)), (\alpha _L,\alpha _R,\Theta )\in {\mathfrak D}^{\theta }_\alpha $. Let $( (W_g), (u_R(g,h))) $ be an element of $\mathop {\mathrm {IP}}\nolimits ( \omega , \alpha , \theta , (\tilde \beta _g ), (\eta _{g}^\sigma ), (\alpha _L,\alpha _R,\Theta ) )$.
Then the following hold:
(i) For any $g,h,k\in G$,
(2.39)$$ \begin{align} &\mathop{\mathrm{Ad}}\nolimits\left ( W_g\left ( \mathbb I_{{\mathcal H}_L}\otimes u_R(h,k)\right ) W_g^*\right )\circ\pi_0 \nonumber \\ &\quad =\pi_0\circ \left ( \mathop{\mathrm{id}}\nolimits_{{\mathcal A}_{H_{L}}}\otimes \alpha_R\eta_g^R\beta_g^{RU} \left ( \eta_h^R\beta_h^{R U} \eta_k^R\left (\beta_h^{R U}\right )^{-1}\left ( \eta_{hk}^R\right )^{-1} \right ) \left ( \eta_g^R\beta_g^{RU}\right )^{-1} \alpha_R^{-1} \right ). \end{align} $$(ii) For any $g,h\in G$,
(2.40)$$ \begin{align} \mathop{\mathrm{Ad}}\nolimits\left ( \left ( u_L(g,h)\otimes u_R(g,h)\right ) W_{gh}\right ) =\mathop{\mathrm{Ad}}\nolimits \left ( W_gW_h\right ) \end{align} $$on ${\mathcal B}({\mathcal H}_{0})$.(iii) For any $g,h,k\in G$,
(2.41)$$ \begin{align} \mathop{\mathrm{Ad}}\nolimits( W_g) \left ( \mathbb I_{{\mathcal H}_L}\otimes u_R(h,k)\right ) \in{\mathbb C}\mathbb I_{{\mathcal H}_L}\otimes{\mathcal B}({\mathcal H}_R). \end{align} $$(iv) For any $g,h,k,f\in G$,
(2.42)$$ \begin{align} \mathop{\mathrm{Ad}}\nolimits\left ( W_g W_h\right )\left ( \mathbb I_{{\mathcal H}_L}\otimes u_R(k,f)\right ) =\left ( \mathop{\mathrm{Ad}}\nolimits\left ( \left ( \mathbb I_{{\mathcal H}_L}\otimes u_R(g,h)\right ) W_{gh}\right ) \right ) \left ( \mathbb I_{{\mathcal H}_L}\otimes u_R(k,f)\right ). \end{align} $$
Proof. We use the notation from definitions (2.9) and (2.23).
(i) Substituting equations (2.30) and (2.31), we have
Because $\eta _h^R\beta _h^{R U} \eta _k^R(\beta _h^{R U} )^{-1}( \eta _{hk}^R)^{-1}$ belongs to $\mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}_{\left ( C_\theta \right )_R}\right )$, it commutes with $\Theta \in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}_{\left ( C_\theta \right )^{c}}\right )$. Hence we obtain
Again, the term in parentheses in the last line is localised at $\left ( C_\theta \right )_R$, and it commutes with $\Theta $. Therefore, we have
(ii) Again by equations (2.30) and (2.31), we have
Here, for the second equality we again used the commutativity of $\eta $s and $\Theta $, due to their disjoint support. Because $\pi _0$ is irreducible, we obtain equation (2.40).
(iii) For any $A\in {\mathcal A}_{H_L}$, we have
because $\Theta \in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}_{\left ( C_\theta \right )^{c}}\right )$. Therefore, $\eta _g^R\in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}_{\left ( C_\theta \right )_R}\right )$ acts trivially on it and we have
As $\Theta $ preserves ${\mathcal A}_{H_L\cup \left ( C_\theta ^c\right )_R }$,
also belongs to ${\mathcal A}_{H_L\cup \left ( C_\theta ^c\right )_R }$. As a result,
belongs to $\pi _L({\mathcal A}_{H_L})\otimes \pi _R\circ \alpha _R( {\mathcal A}_{( C_\theta ^c)_R } )$, and hence commutes with $\mathbb I_{{\mathcal H}_L}\otimes u_R(h,k)$. Hence $\mathop {\mathrm {Ad}}\nolimits (W_g)\left ( \mathbb I_{{\mathcal H}_L}\otimes u_R(h,k) \right )$ commutes with any elements in $\pi _L({\mathcal A}_L)\otimes {\mathbb C}\mathbb I_{{\mathcal H}_R}$. Because $\pi _L$ is irreducible, $\mathop {\mathrm {Ad}}\nolimits (W_g)\left ( \mathbb I_{{\mathcal H}_L}\otimes u_R(h,k) \right )$ belongs to ${\mathbb C}\mathbb I_{{\mathcal H}_L}\otimes {\mathcal B}({\mathcal H}_R)$.
(iv) By (iii), $\mathop {\mathrm {Ad}}\nolimits \left ( W_{gh}\right )\left ( \mathbb I_{{\mathcal H}_L}\otimes u_R(k,f)\right )$ belongs to ${\mathbb C}\mathbb I_{{\mathcal H}_L}\otimes {\mathcal B}({\mathcal H}_R)$. Therefore, from (ii), we have
obtaining (iv).
With this preparation, we may obtain some element of $Z^3(G,{\mathbb T})$ from $\left ((W_g), (u_\sigma (g,h))\right )$.
Lemma 2.4. Set $\omega \in \mathop {\mathcal {SL}}\nolimits , \alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega ), 0<\theta <\frac \pi 2, (\tilde \beta _g)\in \mathop {\mathrm {IG}}\nolimits (\omega ,\theta ), (\eta _{g}^\sigma )\in {\mathcal T}(\theta , (\tilde \beta _g)), (\alpha _L,\alpha _R,\Theta )\in {\mathfrak D}^{\theta }_\alpha $. Let $( (W_g), (u_\sigma (g,h)))$ be an element of $ \mathop {\mathrm {IP}}\nolimits ( \omega , \alpha , \theta , (\tilde \beta _g ), (\eta _{g}^\sigma ), (\alpha _L,\alpha _R,\Theta ) )$. Then there is a $c_R\in Z^3(G,{\mathbb T})$ such that
for all $g,h,k\in G$.
Definition 2.5. We denote this $3$-cocycle $c_R$ in Lemma 2.4 by
and its cohomology class by
Proof. First we prove that there is a number $c_R(g,h,k)\in {\mathbb T}$ satisfying equation (2.52). From equation (2.31), we have
On the other hand, using Lemma 2.3(i), we have that
is also equal to the right-hand side of equation (2.55). Because $\pi _0$ is irreducible, this means that there is a number $c_R(g,h,k)\in {\mathbb T}$ satisfying equation (2.52).
Now let us check that this $c_R$ is a $3$-cocycle. For any $g,h,k,f\in G$, by repeated use of equation (2.52), we get
Here and in the following, we apply equation (2.52) for terms in $\left [\cdot \right ]$ to get the succeeding equality. Applying Lemma 2.3(iv) to the $\{\cdot \}$ part of equation (2.57), we obtain
Hence, we obtain
This means $c_{R}\in Z^{3}(G,{\mathbb T})$.
2.4 The $H^{3}(G,{\mathbb T})$-valued index
From the previous subsection, we remark the following fact:
Lemma 2.6. For any $\omega \in \mathop {\mathcal {SL}}\nolimits $ with $\mathop {\mathrm {IG}}\nolimits (\omega )\neq \emptyset $, there are
Proof. Because $\mathop {\mathrm {IG}}\nolimits (\omega )\neq \emptyset $, there is some $0<\theta <\frac \pi 2$ such that $\mathop {\mathrm {IG}}\nolimits (\omega ,\theta )\neq \emptyset $, and hence $\left (\tilde \beta _g\right )\in \mathop {\mathrm {IG}}\nolimits (\omega ,\theta )$ and $(\eta _g^\sigma )\in {\mathcal T}\left (\theta , \left (\tilde \beta _g\right )\right )$ exist. Because $\omega \in \mathop {\mathcal {SL}}\nolimits $, by definition there exists some $\alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega )$, and by the definition of $\mathop {\mathrm {EAut}}\nolimits (\omega )$, there is some $(\alpha _L,\alpha _R,\Theta )\in {\mathfrak D}^{\theta }_\alpha $. The existence of $( (W_g), (u_R(g,h)))\in \mathop {\mathrm {IP}}\nolimits ( \omega , \alpha , \theta , (\tilde \beta _g ), (\eta _{g}^\sigma ), (\alpha _L,\alpha _R,\Theta ) )$ is given by Lemma 2.1.
By Lemma 2.4, for $\omega \in \mathop {\mathcal {SL}}\nolimits $ with $\mathop {\mathrm {IG}}\nolimits (\omega )\neq \emptyset $ and each choice of (2.60), we can associate some element of $H^3(G,{\mathbb T})$:
In this subsection, we show that the third cohomology class does not depend on the choice of (2.60):
Theorem 2.7. For any $\omega \in \mathop {\mathcal {SL}}\nolimits $ with $\mathop {\mathrm {IG}}\nolimits (\omega )\neq \emptyset $,
is independent of the choice of
Definition 2.8. Let $\omega \in \mathop {\mathcal {SL}}\nolimits $ with $\mathop {\mathrm {IG}}\nolimits (\omega )\neq \emptyset $. We denote the third cohomology given in Theorem 2.7 by
First we show the independence from $( (W_g), (u_\sigma (g,h)))$.
Lemma 2.9. Set
Then we have
Definition 2.10. From this lemma and because there is always $( (W_g), (u_R(g,h)))$ in $\mathop {\mathrm {IP}}\nolimits ( \omega , \alpha , \theta , (\tilde \beta _g ), (\eta _{g}^\sigma ), (\alpha _L,\alpha _R,\Theta ) )$ by Lemma 2.1, we may define
for any
independent of the choice of $( (W_g), (u_\sigma (g,h)))$.
Proof. Because
and $\pi _{0}, \pi _{R}$ are irreducible, there are $b(g),a(g,h)\in {\mathbb T}$, $g,h\in G$, such that
Set
Then from the definition of these values and equation (2.69), we have
Hence we have $\tilde c_{R}(g,h,k)=c_R(g,h,k)\overline {a(h,k)a(g,hk)}a(g,h)a(gh,k)$, and we get $[c_{R}]_{H^{3}\left (G,{\mathbb T}\right )}=\left [\tilde c_{R}\right ]_{H^{3}\left (G,{\mathbb T}\right )}$, proving the claim.
Next we show the independence from $\alpha , (\alpha _L,\alpha _R,\Theta )$:
Lemma 2.11. Set
Then we have
Definition 2.12. From this lemma and because there are always $ \alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega )$ and $(\alpha _L,\alpha _R,\Theta )\in {\mathcal D}_{\alpha }^{\theta }$ for $\omega \in \mathop {\mathcal {SL}}\nolimits $ and $0<\theta <\frac \pi 2$ by the definition, we may define
for any
independent of the choice of $\alpha , (\alpha _L,\alpha _R,\Theta )$.
Proof. By Lemma 2.1, there are
For each $i=1,2$, we have $\Theta _{i}\in \mathop {\mathrm {Aut}}\nolimits {\mathcal A}_{C_{\theta }^{c}}$ and
setting
Because $\omega _{0}\circ \alpha _{1}=\omega =\omega _{0}\circ \alpha _{2}$, we have $\omega _{0}\circ \alpha _{2}\circ \alpha _{1}^{-1}=\omega _{0}$. Therefore, there is a unitary $\tilde V$ on ${\mathcal H}_{0}$ such that $ \pi _{0}\circ \alpha _{2}\circ \alpha _{1}^{-1}=\mathop {\mathrm {Ad}}\nolimits \left ( \tilde V\right )\circ \pi _{0} $. Substituting equation (2.78) into this, we see that there is a unitary V on ${\mathcal H}_{0}$ satisfying
From this, we obtain
for all $g\in G$. Furthermore, we have
Now, because $\eta _g^R\beta _g^{R U} \eta _h^R\left (\beta _g^{R U}\right )^{-1}\left ( \eta _{gh}^R\right )^{-1}$ is an automorphism on ${\mathcal A}_{C_{\theta }}$ and $\Theta _{2}\circ \Theta _{1}^{-1}$ is an automorphism on ${\mathcal A}_{C_{\theta }^{c}}$, they commute. Therefore, we have
From this equality and the fact that $\pi _{L}$ is irreducible, we see that $V\left (\mathbb I_{{\mathcal H}_{L}}\otimes u_{R,1}(g,h)\right ) V^{*}$ is of the form $\mathbb I_{{\mathcal H}_{L}}\otimes u_{R,2}(g,h)$ with some unitary $u_{R,2}(g,h)$ on ${\mathcal H}_{R}$. This $u_{R,2}(g,h)$ satisfies
Analogously, we obtain a unitary $u_{L,2}(g,h)$ on ${\mathcal H}_{L}$ such that
From equations (2.81), (2.84) and (2.85), we see that
Set
It suffices to show that $c_{R,1}=c_{R,2}$. This can be checked directly as follows:
Lemma 2.13. Set
Then we have
Definition 2.14. From this lemma and the definition of $ \mathop {\mathrm {IG}}\nolimits (\omega ,\theta )$, we may define
for any
independent of the choice of $(\eta _{g}^\sigma )$.
Proof. There are $ \alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega )$ and $(\alpha _L,\alpha _R,\Theta )\in {\mathcal D}_{\alpha }^{\theta }$ for $\omega \in \mathop {\mathcal {SL}}\nolimits $ by the definition. We set $\alpha _0:=\alpha _L\otimes \alpha _R$ and $\eta _g:=\eta _g^L\otimes \eta _g^R$, $\tilde \eta _g:=\tilde \eta _g^L\otimes \tilde \eta _g^R$. By Lemma 2.1, there is some
Because $ (\eta _{g}^\sigma ), \left (\tilde \eta _{g}^\sigma \right )\in {\mathcal T}\left (\theta , \left (\tilde \beta _g\right )\right )$, we have
From this, we obtain
hence there are unitaries $v_g^\sigma \in {\mathcal A}_{H_\sigma }$, $\sigma =L,R$, such that
Because $\tilde \eta _g^\sigma , \eta _g^\sigma $ are automorphisms on ${\mathcal A}_{C_\theta ,\sigma }$, $v_g^\sigma $ belongs to ${\mathcal A}_{C_\theta ,\sigma }$. (See Lemma B.1.) Setting $v_g:=v_g^L\otimes v_g^R$, we obtain $\tilde \eta _g=\mathop {\mathrm {Ad}}\nolimits \left ( v_g\right )\circ \eta _g$.
Set
for each $g,h\in G$ and $\sigma =L,R$. We claim that
First, we have
For the first equality, we substituted $\tilde \eta _g=\mathop {\mathrm {Ad}}\nolimits \left ( v_g\right )\circ \eta _g$, and for the second equality, we used the fact that $v_g^\sigma $ belongs to ${\mathcal A}_{C_\theta ,\sigma }$, while $\Theta $ is an automorphism on ${\mathcal A}_{\left ( C_\theta \right )^c,\sigma }$. The last equality follows from the definition of $W_g$. On the other hand, we have
for all $g,h\in G$. For the first equality, we substituted $\tilde \eta _g=\mathop {\mathrm {Ad}}\nolimits \left ( v_g\right )\circ \eta _g$. The third equality is the definition of $u(g,h)$. Hence we have proven formula (2.100).
Set
In order to show the statement of the lemma, it suffices to show that $c_R=\tilde c_R$. Substituting the definition of $\tilde u_R$, we obtain
For the fourth equality, we used the definition of $u_R$. From this equation, applying equation (2.52) to the $[\cdot ]$ part, we have
Now from the definition of $\tilde u_R$, the $\{\cdot \}$ part becomes
Because $v_g^R$ belongs to ${\mathcal A}_{C_\theta ,R}$ and $\eta _g^R$ is an automorphism on ${\mathcal A}_{C_\theta ,R}$ while $\Theta $ is an automorphism on ${\mathcal A}_{\left ( C_\theta \right )^c}$ and $\beta _g^U\left ( {\mathcal A}_{C_\theta ,R}\right )={\mathcal A}_{C_\theta ,R}$, we have
Substituting this into equation (2.106), we obtain
Substituting this to the $\{ \}$ part and the $\{\cdot \}$ part of equation (2.105), we obtain
Because of Lemma 2.3(iii), the $\{\cdot \}$ part of the last equation is equal to $\mathop {\mathrm {Ad}}\nolimits \tilde W_g\left (\mathbb I_{{\mathcal H}_L}\otimes \tilde u_R( h,k)\right )$. Hence we obtain
This proves $c_R=\tilde c_R$, completing the proof.
Lemma 2.15. Set
Then we have
Definition 2.16. From this lemma we may define
for any
independent of the choice of $\left (\tilde \beta _g\right )$.
Proof. By the definition of $\mathop {\mathrm {IG}}\nolimits (\omega ,\theta )$, there are
We set $\eta _{g,i}:=\eta _{g,i}^L\otimes \eta _{g,i}^R$, for $i=1,2$. There are $ \alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega )$ and $(\alpha _L,\alpha _R,\Theta )\in {\mathcal D}_{\alpha }^{\theta }$ for $\omega \in \mathop {\mathcal {SL}}\nolimits $ by the definition. Setting $\alpha _0:=\alpha _L\otimes \alpha _R$, we have $\alpha =({\textrm {{inner}}})\circ \alpha _0\circ \Theta $. By Lemma 2.1, there is some
Set
We claim that there are unitaries $V_g^\sigma $, $g\in G, \ \sigma =L,R$, on ${\mathcal H}_\sigma $ such that
To see this, note that
Therefore, we have
and then using the facts that $\Theta \in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}_{C_\theta ^c}\right )$ and $K_g\in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}_{C_\theta }\right )$,
This implies that $\omega _\sigma $ and $ \omega _\sigma \circ \alpha _\sigma K_g^\sigma \left ( \alpha _\sigma \right )^{-1}$ are quasiequivalent. Because $\pi _\sigma $ is irreducible, this implies the existence of a unitary $V_g^\sigma $ on ${\mathcal H}_\sigma $ satisfying equation (2.118), proving the claim.
Next we claim that there are unitaries $v^\sigma _{g,h}$ on ${\mathcal H}_\sigma $, for $g,h\in G$ and $\sigma =L,R$, such that
and
for any $g,h\in G$ and $\sigma =L,R$. To see this, first we calculate
In the fourth and sixth equalities, we used the fact that $K_h^R, \eta _{g,1}^R\beta _g^{RU} K_h^R \left ( \eta _{g,1}^R\beta _g^{RU}\right )^{-1}\in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}_{C_\theta }\right )$ and $\Theta \in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}_{C_\theta ^c}\right )$ commute, in order to remove $\Theta $. Equation (2.124) and the fact that $\pi _L$ is irreducible imply that there is a unitary $v^R_{g,h}$ satisfying equation (2.122). The same argument implies the existence of $v^L_{g,h}$ satisfying equation (2.122).
For this $v^R_{g,h}$, we would like to show equation (2.123). Rewriting
we obtain
substituting equations (2.118), (2.124) and (2.122). This proves equation (2.123) for $\sigma =R$. An analogous result for $\sigma =L$ can be proven by the same argument. Hence we have proven the claim (2.124) and (2.123).
Setting
we have
In the last equality, we used the definition of $K_g$ and the commutativity of $\Theta $ and $K_g$ again. From equations (2.128) and (2.123), setting
we see that
and
Now we set
To prove the Lemma, it suffices to show $c_{R,1}=c_{R,2}$. By equation (2.131), we have
We used equation (2.52) for the $[\cdot ]$ part and Lemma 2.3(ii) and equation (2.122) for the $\{\cdot \}$ part in the fourth equality. Again using equation (2.131), we have
In the last line we used formula (2.130) and Lemma 2.3(iii) to remove ${V_g^L}^*$. From this, we see that $c_{R,1}=c_{R,2}$, completing the proof.
Lemma 2.17. Set
Then we have
Definition 2.18. From this lemma, for any $\omega \in \mathop {\mathcal {SL}}\nolimits $ with $\mathop {\mathrm {IG}}\nolimits (\omega )\neq \emptyset $, we may define
independent of the choice of $\theta $. This is the index we associate to $\omega \in \mathop {\mathcal {SL}}\nolimits $ with $\mathop {\mathrm {IG}}\nolimits (\omega )\neq \emptyset $.
Proof. By the assumption, there are some $\left (\tilde \beta _g\right )\in \mathop {\mathrm {IG}}\nolimits (\omega ,\theta _1)$ and $(\eta _g^\sigma )\in {\mathcal T}\left ( \left (\theta _1, \tilde \beta _g\right )\right )$. Because $\omega \in \mathop {\mathcal {SL}}\nolimits $, there are $ \alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega )$ and $(\alpha _L,\alpha _R,\Theta )\in {\mathcal D}_{\alpha }^{\theta _2}$ by the definition. Setting $\alpha _0:=\alpha _L\otimes \alpha _R$, we have $\alpha =({\textrm {{inner}}})\circ \alpha _0\circ \Theta $. Because $0<\theta _1<\theta _2<\frac \pi 2$, we also have $(\eta _g^\sigma )\in {\mathcal T}( (\theta _2, \tilde \beta _g ))$, and $\left (\tilde \beta _g\right )\in \mathop {\mathrm {IG}}\nolimits (\omega ,\theta _2)$. For the same reason, we also have $(\alpha _L,\alpha _R,\Theta )\in {\mathcal D}_{\alpha }^{\theta _1}$.
By Lemma 2.1, there is some
However, we also have
Therefore, we obtain $h^{(5)} \left ( \omega , \theta _1 \right ) = h^{(5)} \left ( \omega , \theta _2 \right ) $.
This completes the proof of Theorem 2.7.
3 The existence of $\tilde \beta $ for SPT phases
In this section, we give a sufficient condition for $\mathop {\mathrm {IG}}\nolimits (\omega )$ to be nonempty. We consider the same setting as in Section 2.2.
Theorem 3.1. For any $0<\theta <\frac \pi 2$ and $\alpha \in \mathop {\mathrm {SQAut}}\nolimits ({\mathcal A})$ satisfying $ \omega _0\circ \alpha \circ \beta _g=\omega _0\circ \alpha $ for all $g\in G$, $\mathop {\mathrm {IG}}\nolimits (\omega _0\circ \alpha ,\theta )$ is not empty.
The strategy is as follows. Our infinite tensor product state $\omega _{0}$ can be written as $\omega _{0}=\omega _{U}\otimes \omega _{D}$, with pure states $\omega _{U}, \omega _{D}$ on ${\mathcal A}_{H_{U}}, {\mathcal A}_{H_{D}}$. Using the factorisation property of $\alpha \in \mathop {\mathrm {SQAut}}\nolimits ({\mathcal A})$, we can show that
with $\tilde Y_{g,U}:=\beta _{g}^{C_{\left (\theta _{0.8},\frac \pi 2\right ],U}}\xi _U, \tilde Y_{g,D}:=\beta _{g}^{C_{\left (\theta _{0.8},\frac \pi 2\right ],U}}\xi _D$ automorphisms on $\left ( C_{\theta _{0.8}}\right )^c\cap H_{U}, \left ( C_{\theta _{0.8}}\right )^c\cap H_{D}$, respectively. The ‘automorphism localised at $C_{\theta _2}$’ can be split into left and right parts. (See equation (3.28).) From the latter equation and $\omega _0\circ \alpha \circ \beta _g=\omega _0\circ \alpha $, one can show that $\omega _{U} \tilde Y_{g,U}$ is quasiequivalent to a state of the form $\varphi _{L}\otimes \varphi _{R}\otimes \omega _{C_{\theta _{2}}^{c}}$, where $\varphi _{L}, \varphi _{R}$ are states on ${\mathcal A}_{C_{\theta _{2}\cap H_{L}}}, {\mathcal A}_{C_{\theta _{2}\cap H_{R}}}$ and $\omega _{C_{\theta _{2}}^{c}}$ is the pure state given as the restriction of $\omega _{0}$ to ${\mathcal A}_{{C_{\theta _{2}}^{c}}}$ (with $\theta _{0.8}<\theta _{2}$). A general lemma proven in the following (Lemma 3.2), derived from the homogeneity of pure state spaces on UHF-algebras, then allows us to show the existence of automorphisms $Z_{g,L}, Z_{g,R}$ on ${\mathcal A}_{C_{\theta _{2}\cap H_{L}}}, {\mathcal A}_{C_{\theta _{2}\cap H_{R}}}$ satisfying $\omega _{U} \tilde Y_{g,U}\simeq \omega _{U}\circ \left ( Z_{g,L}\otimes Z_{g,R}\otimes \mathop {\mathrm {id}}\nolimits _{C_{\theta _{2}}^{c}}\right )$. Combining this with equation (3.1) basically gives the Theorem.
Now let us start with a precise mathematical proof. We first prepare the general lemma just mentioned.
Lemma 3.2. Let ${\mathfrak A},{\mathfrak B}$ be UHF-algebras. Let $\omega $ be a pure state on ${\mathfrak A}\otimes {\mathfrak B}$ and $\varphi _{{\mathfrak A}}, \varphi _{{\mathfrak B}}$ states on ${\mathfrak A}, {\mathfrak B}$, respectively. Assume that $\omega $ is quasiequivalent to $\varphi _{{\mathfrak A}}\otimes \varphi _{{\mathfrak B}}$. Then for any pure states $\psi _{{\mathfrak A}}, \psi _{{\mathfrak B}}$ on ${\mathfrak A}, {\mathfrak B}$, there are automorphisms $\gamma _{{\mathfrak A}}\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathfrak A}\right ), \gamma _{{\mathfrak B}}\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathfrak B}\right )$ and a unitary $u\in {\mathcal U}\left ({\mathfrak A}\otimes {\mathfrak B}\right )$ such that
If $\psi _{{\mathfrak A}}$ and $\varphi _{{\mathfrak A}}$ are quasiequivalent, then we may set $\gamma _{{\mathfrak A}}=\mathop {\mathrm {id}}\nolimits _{{\mathfrak A}}$.
Proof. Let $({\mathcal H}_{\omega },\pi _{\omega },\Omega _{\omega }), \left ({\mathcal H}_{\varphi _{{\mathfrak A}}},\pi _{\varphi _{{\mathfrak A}}},\Omega _{\varphi _{{\mathfrak A}}}\right ), \left ({\mathcal H}_{\varphi _{{\mathfrak B}}},\pi _{\varphi _{{\mathfrak B}}},\Omega _{\varphi _{{\mathfrak B}}}\right )$ be GNS triples of $\omega , \varphi _{{\mathfrak A}}, \varphi _{{\mathfrak B}}$, respectively. Then $\left ({\mathcal H}_{\varphi _{{\mathfrak A}}}\otimes {\mathcal H}_{\varphi _{{\mathfrak B}}},\pi _{\varphi _{{\mathfrak A}}}\otimes \pi _{\varphi _{{\mathfrak B}}},\Omega _{\varphi _{{\mathfrak A}}}\otimes \Omega _{\varphi _{{\mathfrak B}}}\right )$ is a GNS triple of $\varphi _{{\mathfrak A}}\otimes \varphi _{{\mathfrak B}}$. As $\omega $ is quasiequivalent to $\varphi _{{\mathfrak A}}\otimes \varphi _{{\mathfrak B}}$, there is a $*$-isomorphism $\tau :\pi _{\omega }\left ({\mathfrak A}\otimes {\mathfrak B}\right )''\to \pi _{\varphi _{{\mathfrak A}}}({\mathfrak A})''\otimes \pi _{\varphi _{{\mathfrak B}}}({\mathfrak B})''$ such that $\tau \circ \pi _{\omega }=\pi _{\varphi _{{\mathfrak A}}}\otimes \pi _{\varphi _{{\mathfrak B}}}$. Because $\omega $ is pure, we have $\pi _{\omega }\left ({\mathfrak A}\otimes {\mathfrak B}\right )''={\mathcal B}({\mathcal H}_{\omega })$, and from the isomorphism $\tau $, we have that $\pi _{\varphi _{{\mathfrak A}}}({\mathfrak A})''\otimes \pi _{\varphi _{{\mathfrak B}}}({\mathfrak B})''$ is also a type I factor. Then from [Reference TakesakiT, Theorem 2.30V], both $\pi _{\varphi _{{\mathfrak A}}}({\mathfrak A})''$ and $\pi _{\varphi _{{\mathfrak B}}}({\mathfrak B})''$ are type I factors. The restriction of $\tau $ to $\pi _{\omega }\left ({\mathfrak A}\otimes {\mathbb C}\mathbb I_{{\mathfrak B}}\right )''$ implies a $*$-isomorphism from $\pi _{\omega }\left ({\mathfrak A}\otimes {\mathbb C}\mathbb I_{{\mathfrak B}}\right )''$ onto the type I factor $\pi _{\varphi _{{\mathfrak A}}}({\mathfrak A})''$. Hence we see that $\pi _{\omega }\left ({\mathfrak A}\otimes {\mathbb C}\mathbb I_{{\mathfrak B}}\right )''$ is a type I factor. Therefore, from [Reference TakesakiT, Theorem 1.31V], there are Hilbert spaces ${\mathcal K}_{{\mathfrak A}},{\mathcal K}_{{\mathfrak B}}$ and a unitary $W: {\mathcal H}_\omega \to {\mathcal K}_{{\mathfrak A}}\otimes {\mathcal K}_{{\mathfrak B}}$ such that $\mathop {\mathrm {Ad}}\nolimits \left ( W\right )\left ( \pi _{\omega }\left ({\mathfrak A}\otimes {\mathbb C}\mathbb I_{{\mathfrak B}}\right )''\right )= {\mathcal B}\left ( {\mathcal K}_{{\mathfrak A}}\right )\otimes {\mathbb C}\mathbb I_{{\mathcal K}_{{\mathfrak B}}} $. Because $\omega $ is pure, we also have $\mathop {\mathrm {Ad}}\nolimits \left ( W\right )\left ( \pi _{\omega }\left ({\mathbb C}\mathbb I_{{\mathfrak A}} \otimes {\mathfrak B}\right )''\right )={\mathbb C}\mathbb I_{{\mathcal K}_{{\mathfrak A}}}\otimes {\mathcal B}({\mathcal K}_{{\mathfrak B}})$. From this, we see that there are irreducible representations $\rho _{{\mathfrak A}}, \rho _{{\mathfrak B}}$ of ${\mathfrak A}$ and ${\mathfrak B}$ on ${\mathcal K}_{{\mathfrak A}}, {\mathcal K}_{{\mathfrak B}}$ such that $\mathop {\mathrm {Ad}}\nolimits (W)\circ \pi _{\omega }=\rho _{{\mathfrak A}}\otimes \rho _{{\mathfrak B}}$. Fix some unit vectors $\xi _{{\mathfrak A}}\in {\mathcal K}_{{\mathfrak A}}, \xi _{{\mathfrak B}}\in {\mathcal K}_{{\mathfrak B}}$. Then because of the irreducibility of $\rho _{{\mathfrak B}}$ and $\rho _{{\mathfrak B}}$, we have that $\omega _{{\mathfrak A}}:=\left \langle \xi _{{\mathfrak A}},\rho _{{\mathfrak A}}\left (\cdot \right )\xi _{{\mathfrak A}}\right \rangle $ and $\omega _{{\mathfrak B}}:=\left \langle \xi _{{\mathfrak B}},\rho _{{\mathfrak B}}\left (\cdot \right )\xi _{{\mathfrak B}}\right \rangle $ are pure states on ${\mathfrak A}, {\mathfrak B}$. By [Reference Kishimoto, Ozawa and SakaiKOS, Theorem 1.1] (originally proved by Powers [Reference PowersP] for UHF-algebras), for any pure states $\psi _{{\mathfrak A}}, \psi _{{\mathfrak B}}$ on ${\mathfrak A}, {\mathfrak B}$, there exist automorphisms $\gamma _{{\mathfrak A}}\in \mathop {\mathrm {Aut}}\nolimits ({\mathfrak A}), \gamma _{{\mathfrak B}}\in \mathop {\mathrm {Aut}}\nolimits ({\mathfrak B})$ such that $\omega _{{\mathfrak A}}=\psi _{{\mathfrak A}}\circ \gamma _{{\mathfrak A}}$ $\omega _{{\mathfrak B}}=\psi _{{\mathfrak B}}\circ \gamma _{{\mathfrak B}}$. Now for unit vectors $W^{*}\left (\xi _{{\mathfrak A}}\otimes \xi _{{\mathfrak B}}\right ),\Omega _{\omega }\in {\mathcal H}_{\omega }$, by Kadison’s transitivity theorem and the irreducibility of $\pi _\omega $ there exists a unitary $u\in {\mathcal U}\left ( {\mathfrak A}\otimes {\mathfrak B}\right )$ such that $\pi _{\omega }(u)\Omega _{\omega }=W^{*}\left (\xi _{{\mathfrak A}}\otimes \xi _{{\mathfrak B}}\right )$. Substituting this, we obtain
Now assume that $\psi _{{\mathfrak A}}$ and $\varphi _{{\mathfrak A}}$ are quasiequivalent – that is, the GNS representations of $\psi _{{\mathfrak A}}, \varphi _{{\mathfrak A}}$, denoted by $\pi _{\psi _{{\mathfrak A}}}$ and $\pi _{\varphi _{{\mathfrak A}}}$ are quasiequivalent. From the foregoing argument, $\pi _{\omega }\rvert _{{\mathfrak A}}$ and $\pi _{\varphi _{{\mathfrak A}}}$ are quasiequivalent. At the same time, $\pi _{\omega }\rvert _{{\mathfrak A}}$ and $\rho _{{\mathfrak A}}$ are quasiequivalent. Therefore, $\pi _{\psi _{{\mathfrak A}}}$ and $\rho _{{\mathfrak A}}$ are quasiequivalent. Because both of them are irreducible, we see that a pure state ${\psi _{{\mathfrak A}}}$ can be represented by a unit vector $\zeta \in {\mathcal K}_{{\mathfrak A}}$, as ${\psi _{{\mathfrak A}}}=\left \langle \zeta ,\rho _{{\mathfrak A}}\left (\cdot \right ) \zeta \right \rangle $. Because $\rho _{{\mathfrak A}}$ is irreducible, by Kadison’s transitivity theorem there exists a unitary $w\in {\mathcal U}\left ( {\mathfrak A}\right )$ such that $\rho _{{\mathfrak A}}(w^{*})\zeta =\xi _{{\mathfrak A}}$. Hence we obtain ${\psi _{{\mathfrak A}}}\circ \mathop {\mathrm {Ad}}\nolimits (w)=\omega _{{\mathfrak A}}$. Substituting this instead of $\omega _{{\mathfrak A}}=\psi _{{\mathfrak A}}\circ \gamma _{{\mathfrak A}}$ in equation (3.4), we obtain
proving the last claim.
Lemma 3.3. Let ${\mathfrak B},{\mathfrak A}_{1,L},{\mathfrak A}_{2,L},{\mathfrak A}_{1,R},{\mathfrak A}_{2,R}$ be UHF-algebras. Set ${\mathfrak A}_{1}:={\mathfrak A}_{1,L}\otimes {\mathfrak A}_{1,R}$, ${\mathfrak A}_{2}:={\mathfrak A}_{2,L}\otimes {\mathfrak A}_{2,R}$, ${\mathfrak A}_{L}:={\mathfrak A}_{1,L}\otimes {\mathfrak A}_{2,L}$ and ${\mathfrak A}_{R}:={\mathfrak A}_{1,R}\otimes {\mathfrak A}_{2,R}$. Let $\omega , \varphi _{L}^{\left (1,2\right )}, \varphi _{R}^{\left (1,2\right )}, \psi $ be pure states on ${\mathfrak B}\otimes {\mathfrak A}_{1}, {\mathfrak A}_{L}, {\mathfrak A}_{R}, {\mathfrak B}$, respectively. Suppose that $\omega $ is quasiequivalent to $\left .\left ( \psi \otimes \varphi _{L}^{\left (1,2\right )}\otimes \varphi _{R}^{\left (1,2\right )} \right )\right \rvert _{{\mathfrak B}\otimes {\mathfrak A}_{1}}$. Then for any pure states $\varphi _{L}^{(1)}, \varphi _{R}^{(1)}$ on ${\mathfrak A}_{1,L}, {\mathfrak A}_{1,R}$, respectively, there are automorphisms $\gamma _{L}^{(1)}\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathfrak A}_{1,L}\right ), \gamma _{R}^{(1)}\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathfrak A}_{1,R}\right )$ and a unitary $u\in {\mathcal U}\left ({\mathfrak B}\otimes {\mathfrak A}_{1}\right )$ such that
Proof. Because the pure state $\omega $ is quasiequivalent to $\left .\left ( \psi \otimes \varphi _{L}^{\left (1,2\right )}\otimes \varphi _{R}^{\left (1,2\right )} \right )\right \rvert _{{\mathfrak B}\otimes {\mathfrak A}_{1}} =\psi \otimes \left .\left ( \varphi _{L}^{\left (1,2\right )}\otimes \varphi _{R}^{\left (1,2\right )} \right )\right \rvert _{{\mathfrak A}_{1}}$, applying Lemma 3.2 means that for any pure states $\varphi _{L}^{(1)}, \varphi _{R}^{(1)}$ on ${\mathfrak A}_{1,L}, {\mathfrak A}_{1,R}$, there exist an automorphism $S\in \mathop {\mathrm {Aut}}\nolimits {\mathfrak A}_1$ and a unitary $v\in {\mathcal U}\left ( {\mathfrak B}\otimes {\mathfrak A}_1\right )$ such that
From equation (3.7) and $\omega \sim _{\text {q.e.}}\left .\left ( \psi \otimes \varphi _{L}^{\left (1,2\right )}\otimes \varphi _{R}^{\left (1,2\right )} \right )\right \rvert _{{\mathfrak B}\otimes {\mathfrak A}_{1}}$, we get $ \left ( \psi \otimes \left ( \left ( \varphi _{L}^{(1)} \otimes \varphi _{R}^{(1)}\right )\circ S\right ) \right )\sim _{\text {q.e.}} \left .\left ( \psi \otimes \varphi _{L}^{\left (1,2\right )}\otimes \varphi _{R}^{\left (1,2\right )} \right )\right \rvert _{{\mathfrak B}\otimes {\mathfrak A}_{1}}$, which implies
Applying Lemma 3.2 to formula (3.8), there are automorphisms $\gamma _{L}^{(1)}\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathfrak A}_{1,L}\right ), \gamma _{R}^{(1)}\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathfrak A}_{1,R}\right )$ and a unitary $w\in {\mathcal U}\left ( {\mathfrak A}_{1}\right )$ such that
Substituting this into equation (3.7), we obtain equation (3.6).
Lemma 3.4. Let ${\mathfrak A}_L, {\mathfrak A}_R, {\mathfrak B}_{LU}, {\mathfrak B}_{LD}, {\mathfrak B}_{RU}, {\mathfrak B}_{RD}, {\mathfrak C}_U, {\mathfrak C}_D$ be UHF-algebras, and set
Let $\omega _X$ be a pure state on each $X={\mathfrak A}_L, {\mathfrak A}_R, {\mathfrak B}_{LU}, {\mathfrak B}_{LD}, {\mathfrak B}_{RU}, {\mathfrak B}_{RD}, {\mathfrak C}_U, {\mathfrak C}_D$, and set
Let $\alpha ,\hat \alpha $ be automorphisms on ${\mathfrak D}$ which allow the following decompositions:
Here, $\rho _{{\mathfrak B}{\mathfrak C}}^U, \rho _{{\mathfrak B}{\mathfrak C}}^D$ are automorphisms on ${\mathfrak B}_U\otimes {\mathfrak C}_U, {\mathfrak B}_D\otimes {\mathfrak C}_D$, respectively. For each $\sigma =L,R$, $\gamma _{{\mathfrak A}{\mathfrak B}}^{\sigma },\hat \gamma _{{\mathfrak A}{\mathfrak B}}^{\sigma }$ are automorphisms on ${\mathfrak A}_{\sigma }\otimes {\mathfrak B}_{{\sigma }D}\otimes {\mathfrak B}_{{\sigma }U}$. Suppose that $\omega _0\circ \hat \alpha =\omega _0$. Then there are automorphisms $\eta _L,\eta _R$ on ${\mathfrak A}_L\otimes {\mathfrak B}_{LD}\otimes {\mathfrak B}_{LU}, {\mathfrak A}_R\otimes {\mathfrak B}_{RD}\otimes {\mathfrak B}_{RU}$ such that $\omega _0\circ \alpha $ is quasiequivalent to $\omega _0\circ \left (\mathop {\mathrm {id}}\nolimits _{{\mathfrak C}_U}\otimes \eta _L\otimes \eta _R\otimes \mathop {\mathrm {id}}\nolimits _{{\mathfrak C}_D}\right )$.
Proof. First we claim that there are automorphisms $\theta _{\mathfrak B}^{LU}\in \mathop {\mathrm {Aut}}\nolimits {{\mathfrak B}_{LU}}, \theta _{\mathfrak B}^{RU}\in \mathop {\mathrm {Aut}}\nolimits {\mathfrak B}_{RU}$ and a unitary $u\in {\mathcal U}\left ( {\mathfrak B}^U\otimes {\mathfrak C}^U\right )$ such that
To prove this, we first note that from $\omega _0\circ \hat \alpha =\omega _0$ and the decomposition (3.12), we have
From this, because both states are pure (hence the restrictions of their GNS representations onto ${\mathfrak C}_U\otimes {\mathfrak B}_U$ are factors), we have
We apply Lemma 3.3 for ${\mathfrak B}, {\mathfrak A}_{1L}, {\mathfrak A}_{1R}, {\mathfrak A}_{2L}, {\mathfrak A}_{2R}, \omega , \varphi _L^{(1,2)}, \varphi _R^{(1,2)}, \psi $, replaced by ${\mathfrak C}_U, {\mathfrak B}_{LU}, {\mathfrak B}_{RU}, {\mathfrak A}_{L}\otimes {\mathfrak B}_{LD}, {\mathfrak A}_R\otimes {\mathfrak B}_{RD}, \omega _{{\mathfrak B}{\mathfrak C}}^U\circ \rho _{{\mathfrak B}{\mathfrak C}}^U, \omega _{{\mathfrak A}{\mathfrak B}}^L\circ \left (\widehat {\gamma _{{\mathfrak A}{\mathfrak B}}^L}\right )^{-1}, \omega _{{\mathfrak A}{\mathfrak B}}^R\circ \left ( \widehat {\gamma _{{\mathfrak A}{\mathfrak B}}^R}\right )^{-1}, \omega _{{\mathfrak C}_U}$, respectively. From equation (3.16), they satisfy the conditions in Lemma 3.3. Applying Lemma 3.3 – for pure states $\varphi _L^{(1)}=\omega _{{\mathfrak B}_{LU}}$ and $\varphi _R^{(1)}=\omega _{{\mathfrak B}_{RU}}$ – we obtain automorphisms $\theta _{{\mathfrak B}}^{LU}\in \mathop {\mathrm {Aut}}\nolimits \left ({\mathfrak B}_{LU}\right ), \theta _{{\mathfrak B}}^{RU}\in \mathop {\mathrm {Aut}}\nolimits \left ({\mathfrak B}_{RU}\right )$ and a unitary $u\in {\mathcal U}\left ({\mathfrak B}_U\otimes {\mathfrak C}_U\right )$ satisfying equation (3.14).
We set
Then we have
This completes the proof.
Now we are ready to prove Theorem 3.1.
Proof of Theorem 3.1.
Set $0<\theta <\frac \pi 2$ and $\alpha \in \mathop {\mathrm {SQAut}}\nolimits ({\mathcal A})$ satisfying $ \omega _0\circ \alpha \circ \beta _g=\omega _0\circ \alpha $ for all $g\in G$. We would like to show that $\mathop {\mathrm {IG}}\nolimits (\omega _0\circ \alpha ,\theta )$ is not empty.
Let us set $\theta _{2.2}:=\theta $ and consider $\theta _{0.8}, \theta _1, \theta _{1.2}, \theta _{1.8}, \theta _2, \theta _{2.8}, \theta _3, \theta _{3.2}$ satisfying formula (2.11) for this $\theta _{2.2}$. Because $\alpha \in \mathop {\mathrm {SQAut}}\nolimits ({\mathcal A})$, there is a decomposition given by formulas (2.12), (2.13) and (2.14). Using this decomposition, set
We have $\alpha =({\textrm {{inner}}})\circ \alpha _2\circ \alpha _1$.
We would like to show that $\left (\alpha \circ \beta _g^U\circ \alpha ^{-1}, \alpha \circ \beta _g\circ \alpha ^{-1}\right )$ satisfy the conditions of $(\alpha ,\hat \alpha )$ in Lemma 3.4. We first show that they satisfy a decomposition corresponding to equations (3.12) and (3.13). For $\Gamma ={\mathbb Z}^2, H_U$, we have
The latter part, $\left ( \alpha _1\beta _g^\Gamma \alpha _1^{-1}\right )^{-1} \alpha _2\alpha _1\beta _g^{\Gamma }\alpha _1^{-1}\alpha _2^{-1}$, decomposes to left and right. To see this, first note that
Because the conjugation $\left ( \beta _g^\Gamma \right )^{-1}\cdot \beta _g^{\Gamma }$ does not change the support of an automorphism, $\left ( \beta _g^\Gamma \right )^{-1}\left ( \alpha _1^{-1}\alpha _2\alpha _1\right ) \beta _g^{\Gamma }$ is also supported on ${C_{\theta _{1.2}}}$. Therefore, we have
Hence we get the left-right decomposition
Here we set
On the other hand, the first part of equation (3.20) with $\Gamma ={\mathbb Z}^2,H_U$ satisfies
where
Hence we obtain decompositions
Because $\xi _{\zeta }\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathcal A}_{\left ( \left ( C_{\theta _{0.8}}\right )^c\right )_\zeta } \right )$ commutes with $\beta _{g}^{C_{\left [0,\theta _{0.8}\right ]}}$ and $\beta _{g}^{C_{\left [0,\theta _{0.8}\right ],U}}$, we get
Furthermore, from the $\beta _g$-invariance of $\omega _0\circ \alpha $, we have
Now we apply Lemma 3.4 for ${\mathfrak A}_\sigma , {\mathfrak B}_{\sigma \zeta }, {\mathfrak C}_\zeta $ replaced by ${\mathcal A}_{\left ( C_{\left [0,\theta _{0.8}\right ]}\right )_\sigma }, {\mathcal A}_{\left ( C_{\left (\theta _{0.8},\theta _{2}\right ]}\right )_{\sigma ,\zeta }}, {\mathcal A}_{\left ( C_{\left (\theta _2,\frac \pi 2\right ]}\right )_\zeta }$, for $\sigma =L,R$, $\zeta =D,U$. By equations (3.29) and (3.28), $\left (\alpha \circ \beta _g^U\circ \alpha ^{-1}, \alpha \circ \beta _g\circ \alpha ^{-1}\right )$ satisfy the conditions of $(\alpha ,\hat \alpha )$ in Lemma 3.4, for $\omega _0$ and its restrictions. Applying Lemma 3.4, there are $\tilde \eta _{\sigma ,g}\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathcal A}_{\left ( C_{\theta _2}\right )_\sigma }\right )$, $g\in G$, $\sigma =L,R$, such that
Because both $\omega _0\circ \alpha \circ \beta _g^U\circ \alpha ^{-1}$ and $\omega _0\circ \left ( \tilde \eta _{Lg}\otimes \tilde \eta _{Rg} \right )$ are pure, by Kadison’s transitivity theorem there exists a unitary $\tilde v_g\in {\mathcal U}({\mathcal A})$ such that
We define
It suffices to show that $\left (\tilde \beta _g\right )\in \mathop {\mathrm {IG}}\nolimits (\omega _0\circ \alpha ,\theta )=\mathop {\mathrm {IG}}\nolimits \left (\omega _0\circ \alpha ,\theta _{2.2}\right )$. By equation (3.31), we have $\omega _0\circ \alpha \circ \tilde \beta _g=\omega _0\circ \alpha $. Therefore, what is left to be proven is that there are $\eta _{g}^\sigma \in \mathop {\mathrm {Aut}}\nolimits \left ( \left ( C_\theta \right )_\sigma \right )$, $g\in G$, $\sigma =L,R$, such that
By the decomposition (2.12) and the fact that $\tilde \eta _{Lg^{-1}}\otimes \tilde \eta _{Rg^{-1}}$ has support in $C_{\theta _2}$, we have
where
Substituting this into formula (3.32), we obtain equation (3.33). This completes the proof.
4 The stability of the index $h(\omega )$
In this section we prove the stability of the index $h(\omega )$ with respect to $\gamma \in \mathop {\mathrm {GUQAut}}\nolimits ({\mathcal A})$.
Theorem 4.1. Set $\omega \in \mathop {\mathcal {SL}}\nolimits $ with $\mathop {\mathrm {IG}}\nolimits (\omega )\neq \emptyset $. Set $\gamma \in \mathop {\mathrm {GUQAut}}\nolimits \left ({\mathcal A}\right )$. Then we have $\omega \circ \gamma \in \mathop {\mathcal {SL}}\nolimits $ with $\mathop {\mathrm {IG}}\nolimits (\omega \circ \gamma )\neq \emptyset $ and
Proof. The point of the proof is that we can derive $\left (\hat \alpha _{L},\hat \alpha _{R},\hat \Theta \right )\in {\mathcal D}_{\alpha \gamma }^{\theta _{1.2}}$ (formulas (4.10) and (4.11)) and $\left ( \gamma ^{-1}\tilde \beta _{g}\gamma \right )\in \mathop {\mathrm {IG}}\nolimits (\omega \circ \gamma ,\theta _{1.2}), \left (\hat \eta _{g}^{\sigma }\right )\in {\mathcal T}\left (\theta _{1.2}, \left ( \gamma ^{-1}\tilde \beta _{g}\gamma \right )\right )$ (formula (4.16)) from the corresponding objects for $\alpha $, using the factorisation property of $\alpha ,\gamma $. And it is straightforward to see that the $\beta _{g}^{U}$-invariance of $\gamma _{C}$ results in $\mathop {\mathrm {IP}}\nolimits \left ( \omega , \alpha , \theta _{2}, \left (\tilde \beta _g\right ), (\eta _{g}^\sigma ), (\alpha _L,\alpha _R,\Theta ) \right ) =\mathop {\mathrm {IP}}\nolimits \left ( \omega \circ \gamma , \alpha \circ \gamma , \theta _{1.2}, \left (\gamma ^{-1}\tilde \beta _g\gamma \right ), \left (\hat \eta _{g}^\sigma \right ), \left (\hat \alpha _L,\hat \alpha _R,\hat \Theta \right ) \right )$, which immediately implies the Theorem.
Step 1. From $\omega \in \mathop {\mathcal {SL}}\nolimits $, there is an $ \alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega )$. For any $0<\theta <\frac \pi 2$ fixed, we show that ${\mathcal D}^{\theta }_{\alpha \circ \gamma }\neq \emptyset $, hence $\alpha \circ \gamma \in \mathop {\mathrm {QAut}}\nolimits ({\mathcal A})$ and $\omega \circ \gamma =\omega _{0}\circ \alpha \gamma \in \mathop {\mathcal {SL}}\nolimits $. Set $\theta _{1.2}:=\theta $ and choose
Because $\alpha \in \mathop {\mathrm {QAut}}\nolimits ({\mathcal A})$, there exists some $(\alpha _L,\alpha _R,\Theta )\in {\mathcal D}_{\alpha }^{\theta _{2}}$. Setting $\alpha _0:=\alpha _L\otimes \alpha _R$, we have $\alpha =({\textrm {{inner}}})\circ \alpha _0\circ \Theta $. Because $\gamma \in \mathop {\mathrm {GUQAut}}\nolimits \left ({\mathcal A}\right )$, there are $\gamma _{H}\in \mathop {\mathrm {HAut}}\nolimits ({\mathcal A})$ and $\gamma _{C}\in \mathop {\mathrm {GSQAut}}\nolimits ({\mathcal A})$ such that
Because $\gamma _{H}\in \mathop {\mathrm {HAut}}\nolimits ({\mathcal A})$, we may decompose $\gamma _{H}$ as
with some $\gamma _{H, {\sigma }}\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathcal A}_{{\left ( C_{\theta _{0}}\right )_\sigma }}\right )$, $\sigma =L,R$. We set $\gamma _{0}:=\gamma _{H, {L}}\otimes \gamma _{H,R}\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathcal A}_{{ C_{\theta _{0}}}}\right )$. By definition, $\gamma _{C}\in \mathop {\mathrm {GSQAut}}\nolimits ({\mathcal A})$ allows a decomposition
with
for
Here we have
for any
Set
and
We claim
This means $(\hat \alpha _{L},\hat \alpha _{R},\hat \Theta )\in {\mathcal D}_{\alpha \gamma }^{\theta _{1.2}}$, hence ${\mathcal D}_{\alpha \gamma }^{\theta }={\mathcal D}_{\alpha \gamma }^{\theta _{1.2}}\neq \emptyset $. The claim (4.12) can be checked as follows. Note that $\gamma _{\left (\theta _2,\theta _3\right ]}\otimes \gamma _{\left (\theta _3,\frac \pi 2\right ]}$ and $\gamma _{\left (\theta _{0.8}, \theta _{1.2}\right ]}$ commute because of their disjoint supports. Because $\Theta \in \mathop {\mathrm {Aut}}\nolimits ({\mathcal A}_{C_{\theta _{2}}^{c}})$, it commutes with $\gamma _{\left [0,\theta _1\right ]}\otimes \gamma _{\left (\theta _1,\theta _2\right ]}$ and $\gamma _{\left (\theta _{0.8}, \theta _{1.2}\right ]}$. Therefore, we have
Because $\gamma _{0}\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathcal A}_{{ C_{\theta _{0}}}}\right )$ and $\hat \Theta \in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathcal A}_{C_{\theta _{1.8}}^{c}}\right )$ commute, we have
proving equation (4.12).
Step 2. From $\mathop {\mathrm {IG}}\nolimits (\omega )\neq \emptyset $, we fix a $0<\theta _{0}<\frac \pi 2$ such that $\mathop {\mathrm {IG}}\nolimits (\omega ,\theta _{0})\neq \emptyset $. We choose $\theta _{0.8},\theta _1,\theta _{1.2},\theta _{1.8},\theta _2,\theta _{2.2}, \theta _{2.8},\theta _3,\theta _{3.2}$ such that
For these $\theta $s, we associate the decomposition of $\gamma $ in step 1. Fix $\left ( \tilde \beta _{g}\right )\in \mathop {\mathrm {IG}}\nolimits (\omega ,\theta _{0})$ and $ \left (\eta _{g}^{\sigma }\right )\in {\mathcal T}\left (\theta _{0}, \left (\tilde \beta _g\right )\right )$. Set $\eta _{g}:=\eta _{g}^{L}\otimes \eta _{g}^{R}$. Note that $\left (\eta _{g}^{\sigma }\right )$ also belongs to ${\mathcal T}\left (\theta _{2}, \left (\tilde \beta _g\right )\right )$. Set
for $\sigma =L,R$. We also set $\hat \eta _{g}:=\hat \eta _{g}^{L}\otimes \hat \eta _{g}^{R}$. We claim that $\left ( \gamma ^{-1}\tilde \beta _{g}\gamma \right )\in \mathop {\mathrm {IG}}\nolimits (\omega \circ \gamma ,\theta _{1.2})$ with $\left (\hat \eta _{g}^{\sigma }\right )\in {\mathcal T}\left (\theta _{1.2}, \left ( \gamma ^{-1}\tilde \beta _{g}\gamma \right )\right )$. Clearly we have
Therefore, what remains to be shown is
To see this, we first have
from the decomposition of equations (4.3), (4.4) and (4.5). Because $\gamma _{\left (\theta _1,\theta _2\right ]} \otimes \gamma _{\left (\theta _2,\theta _3\right ]}\otimes \gamma _{\left (\theta _3,\frac \pi 2\right ]}$ commutes with $\eta _{g}\in \mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{{ C_{\theta _{0}}}})$ and $\gamma _{\left (\theta _{1.8},\theta _{2.2}\right ]} \otimes \gamma _{\left (\theta _{2.8},\theta _{3.2}\right ]}$ commutes with $\left ( \gamma _{\left [0,\theta _1\right ]}\right )^{-1}\eta _{g}\gamma _{[0,\theta _1]}\in \mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{{ C_{\theta _{1}}}})$, we have
On the other hand, because $\gamma _{CS}$ and $\beta _{g}^{U}$ commute, we have
Combining equations (4.20) and (4.21), we obtain
In the second equality, we used the fact that $ \gamma _{[0,\theta _1]} \gamma _{(\theta _{0.8}, \theta _{1.2}]} $ and $\beta _{g}^{U}$ commute. This completes the proof of the claim.
Step 3. We use the setting and notation of steps 1 and 2 (with $\theta _{0}$ chosen in step 2). By Lemma 2.1, there exists
Now we have
We claim
This immediately implies $h(\omega )=h(\omega \circ \gamma )$. To prove the claim, we first see from formulas (4.10) and (4.11) that
because $\gamma _{\left (\theta _{0.8}, \theta _{1.2}\right ]}\circ \gamma _{0}\in \mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{{ C_{\theta _{1.2}}}})$ and $\Theta \circ ( \gamma _{(\theta _2,\theta _3 ]}\otimes \gamma _{\left (\theta _3,\frac \pi 2\right ]} ) \circ ( \gamma _{\left (\theta _{1.8},\theta _{2.2}\right ]} \otimes \gamma _{\left (\theta _{2.8},\theta _{3.2}\right ]} )\in \mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{{ C_{\theta _{1.8}}}^{c}})$ commute. Furthermore, because $\gamma _{\left [0,\theta _1\right ]}$ and $\Theta \circ ( \gamma _{(\theta _2,\theta _3 ]}\otimes \gamma _{\left (\theta _3,\frac \pi 2\right ]} ) \circ \left ( \gamma _{\left (\theta _{1.8},\theta _{2.2}\right ]} \otimes \gamma _{\left (\theta _{2.8},\theta _{3.2}\right ]} \right ) \in \mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{{ C_{\theta _{1.8}}}^{c}})$ commute and $\gamma _{\left (\theta _1,\theta _2\right ]}$ and $\Theta \in \mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{{ C_{\theta _{2}}}^{c}} )$ commute, we have
Here $\hat \gamma :=\gamma _{(\theta _1,\theta _2 ]} \circ ( \gamma _{ (\theta _2,\theta _3 ]}\otimes \gamma _{\left (\theta _3,\frac \pi 2\right ]} ) \circ \left ( \gamma _{\left (\theta _{1.8},\theta _{2.2}\right ]} \otimes \gamma _{\left (\theta _{2.8},\theta _{3.2}\right ]} \right )\in \mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{{ C_{\theta _{1}}}^{c}} )$ commutes with $\beta _{g}^{U}$. Combining this and
we obtain
Because $\hat \gamma $ commutes with $\beta _{g}^{U}$ and $ \eta _{g}\in \mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{{ C_{\theta _{0}}}} )$ commutes with $\hat \gamma \in \mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{{ C_{\theta _{1}}}^{c}} )$, we have
Hence the condition for $W_{g}$ in formula (4.25) is checked. On the other hand, substituting formulas (4.11) and (4.16), we get
Because $ \eta _g^R\beta _g^{RU} \eta _h^R(\beta _g^{R U})^{-1}( \eta _{gh}^R)^{-1}\in \mathop {\mathrm {Aut}}\nolimits ( {\mathcal A}_{{ C_{\theta _{0}}}})$ commutes with $\gamma _{\left (\theta _1,\theta _2\right ],R}$, we obtain
An analogous statement for $\sigma =L$ also holds. This completes the proof of formula (4.25). Hence the statement of the theorem is proven.
5 Proof of Theorem 1.5
In this section, we prove Theorem 1.5. The proof relies heavily on the machinery of quasilocal automorphisms developed in [Reference Bachmann, Michalakis, Nachtergaele and SimsBMNS, Reference Nachtergaele, Sims and YoungNSY, Reference Moon and OgataMO]. (A summary is given in Appendix D.) We use terminology and facts from Appendixes C and D freely. We introduce a set of F-functions with fast decay, ${\mathcal F}_a$, as Definition C.2. A crucial point for us is the following:
Theorem 5.1. Set $\Phi _0,\Phi _1\in {\mathcal P}_{UG}$ and let $\omega _{\Phi _0}, \omega _{\Phi _1}$ be their unique gapped ground states. Suppose that $\Phi _0\sim \Phi _1$ holds, via a path $\Phi : [0,1]\to {\mathcal P}_{UG}$. Then there exists some $\Psi \in \hat {\mathcal B}_F([0,1])$ with $\Psi _{1}\in \hat {\mathcal B}_{F}([0,1])$ for some $F\in {\mathcal F}_a$ of the form $F(r)=\frac {\exp \left ( {-r^{\theta }}\right )}{(1+r)^{4}}$ with a constant $0<\theta <1$, such that $\omega _{\Phi _{1}}=\omega _{\Phi _0}\circ \tau _{1,0}^{\Psi }$. If $\Phi _0,\Phi _1\in {\mathcal P}_{UG\beta }$ and $\Phi \sim _\beta \Phi _0$, we may take $\Psi $ to be $\beta $-invariant.
For the proof, see Appendix D.
From this and Theorems 3.1 and 4.1, in order to show Theorem 1.5 it suffices to show the following, which says that the automorphism $\tau _{1,0}^{\Psi }$ in Theorem 5.1 satisfies all the good factorisation properties which we assumed in previous sections:
Theorem 5.2. Let $F\in {\mathcal F}_a$ be an F-function of the form $F(r)=\frac {\exp \left ( {-r^{\theta }}\right )}{(1+r)^{4}}$ with a constant $0<\theta <1$. Let $\Psi \in \hat {\mathcal B}_{F}([0,1])$ be a path of interactions satisfying $\Psi _1\in \hat {\mathcal B}_F([0,1])$. Then we have $\tau _{1,0}^{\Psi }\in \mathop {\mathrm {SQAut}}\nolimits ({\mathcal A})$. Furthermore, if $\Psi $ is $\beta _{g}^{U}$-invariant – that is, $\beta _{g}^U\left ( \Psi (X;t)\right )=\Psi (X;t)$ for any $X\in {\mathfrak S}_{{\mathbb Z}^2}$, $t\in [0,1]$ and $g\in G$ – then we have $\tau _{1,0}^{\Psi }\in \mathop {\mathrm {GSQAut}}\nolimits ({\mathcal A})$.
Proof. Fix arbitrary
We show the existence of the decomposition
with $\alpha $s of the forms in formulas (2.13) and (2.14). We follow the strategy of [Reference Naaijkens and OgataNO].
Step 1. Fix some $0<\theta '<\theta $ and set
With a suitably chosen constant $c_{1}>0$, we have
Namely, $c_{1}\tilde F(r)$ satisfy the condition on $\tilde F_{\theta }$ in Definition C.2(ii) for our $F=\frac {\exp \left ( {-cr^{\theta }}\right )}{(1+r)^{4}}$ and $\theta =\frac 12$. Set
Define $\Psi ^{(0)}, \Psi ^{(1)}\in \hat {\mathcal B}_{F}([0,1])$ by
for each $X\in {\mathfrak S}_{{\mathbb Z}^2}$, $t\in [0,1]$.
First we would like to represent $ ( \tau _{1,0}^{\Psi ^{(0)}})^{-1}\circ \tau _{1,0}^{ \Psi }$ as some quasilocal automorphism. Set $t,s\in [0,1]$. We apply Proposition D.6 for $\Psi $ replaced by $\Psi ^{(1)}$ and $\tilde \Psi $ by $\Psi $. Hence we set
and
Corresponding to equation (D.31), we obtain
Applying Proposition D.6. we have $\Xi ^{(n)(s)}, \Xi ^{(s)}\in \hat {\mathcal B}_{\tilde F}([0,1])$, and
holds. Two functions $\hat \tau _{t,s}^{(\Lambda _n), \Xi ^{(n)(s)}}(A)$ and $ \tau _{t,s}^{(\Lambda _n ), \Psi }\circ ( \tau _{t,s}^{(\Lambda _n ),\Psi ^{(0)}} )^{-1}(A)$ satisfy the same differential equation and initial condition. Therefore we obtain
From the fact that $ \hat \tau _{t,u}^{\left (\Lambda _n\right ), \Xi ^{(n)(s)}}=\tau _{u,t}^{\left (\Lambda _n\right ), \Xi ^{(n)(s)}}=\tau _{u,t}^{\Xi ^{(n)(s)}}$ converges strongly to an automorphism $\tau _{u,t}^{\Xi ^{(s)}}$ on ${\mathcal A}$ (equation (5.11)), we have
On the other hand, by Theorem D.3 we have, for $t \in [0,1]$ and $A \in {\mathcal A}$,
Therefore, taking the $n\to \infty $ limit in equation (5.12), we obtain
Hence we have
In particular, we get
Step 2. We show
From this,
converges absolutely in the norm topology and defines an element in ${\mathcal A}$. Furthermore, for
we get
from formula (5.18).
To prove formula (5.18), we first bound
For the third inequality, we used Theorem D.3 3. For any cone $C_1,C_2$ of ${\mathbb Z}^2$ with its apex at the origin, we set
From the definition of $ \Psi ^{(1)}$, we have $ \Psi ^{(1)}\left ( X; t\right ) =0, $ unless X has a nonempty intersection with at least two elements in ${\mathcal C}_{0}$. Therefore, if X gives a nonzero contribution in formula (5.22), then it has to satisfy
Hence we have
Hence it suffices to show that $M({C_1,C_2})<\infty $ for all $C_{1},C_{2}\in {\mathcal C}_{0}$ with $C_1\neq C_2$.
In order to proceed, we prepare two estimates. We will freely identify ${\mathbb C}$ and ${\mathbb R}^{2}$ in an obvious manner. In particular, $\arg z$ of $z\in {\mathbb Z}^{2}\subset {\mathbb R}^{2}$ in the following definition is considered with this identification: For $\varphi _{1}<\varphi _{2}$, we set
We define $\check C_{\left (\varphi _{1},\varphi _{2}\right )}$ and so on analogously. Set
Lemma 5.3. Set $\varphi _1<\varphi _2<\varphi _3<\varphi _4$ with $\varphi _4-\varphi _1<2\pi $. Then
Proof. Substituting Lemma C.4, we obtain
We used Lemma C.4 in the last inequality. The last value is finite by equation (C.14) for our $F\in {\mathcal F}_{a}$.
Set
Lemma 5.4. For $\varphi _1<\varphi _2<\varphi _3$ with $\varphi _3-\varphi _1<\frac \pi 2$, we have
Proof. Set
Note that if $X\in {\mathfrak S}_{{\mathbb Z}^2}$ satisfies $X\subset \check {C}_{\left [\varphi _1,\varphi _3\right ]}$ and $X\cap ( ( ( \check C_{ (\varphi _1,\varphi _3 )} )^c )(m) )\neq \emptyset $, then we have
Therefore, we have
In the last inequality, we used Lemma C.5 with $\varphi _3-\varphi _1<\frac \pi 2$. Because $\varphi _3-\varphi _1<\frac \pi 2$ and because of formula (C.14), the last value is finite.
Now let us go back to the estimate of formula (5.23). If $C_1,C_2\in {\mathcal C}_0$ are $C_1=\check {C}_{\left [\varphi _1,\varphi _2\right ]}, C_2=\check {C}_{\left [\varphi _3,\varphi _4\right ]}$ with $\varphi _1<\varphi _2<\varphi _3<\varphi _4, \varphi _4-\varphi _1<2\pi $, then from Lemma 5.3, we have
Now suppose that $C_1,C_2\in {\mathcal C}_0$ are $C_1=\check {C}_{\left [\varphi _1,\varphi _2\right ]}, C_2=\check C_{\left [\varphi _2,\varphi _3\right ]}$ with $\varphi _1<\varphi _2<\varphi _3, \varphi _3-\varphi _1<2\pi $. (Recall definition (5.5).) By the definition of ${\mathcal C}_0$ and ${\mathcal C}_1$, there is some $C=C_{\left (\zeta _1,\zeta _2\right )}\in {\mathcal C}_1$ such that $\varphi _1<\zeta _1<\varphi _2<\zeta _2<\varphi _3$ and $\zeta _2-\zeta _1<\frac \pi 2$. For $X\in {\mathfrak S}_{{\mathbb Z}^2}$ to give a nonzero contribution in formula (5.23), it has to satisfy
For such an X, one of the following occurs:
(i) $X\cap \check C_{\left [\zeta _2,\varphi _3\right ]}\neq \emptyset $ and $X\cap \check {C}_{\left [\varphi _1,\varphi _2\right ]}\neq \emptyset $.
(ii) $X\cap \check C_{\left [\varphi _1,\zeta _1\right ]}\neq \emptyset $ and $X\cap \check C_{\left [\varphi _2,\varphi _3\right ]}\neq \emptyset $.
(iii) $X\cap \check C_{\left [\varphi _2, \zeta _2\right ]}\neq \emptyset (\text {and } X\cap \check C_{\left [\zeta _1,\varphi _2\right ]}\neq \emptyset )$ and $X\cap \check C_{\left [\varphi _3,\varphi _1+2\pi \right ]}\neq \emptyset $.
(iv) $X\subset \check C_{\zeta _1,\zeta _2}$, $X\cap ( ( \check C_{\zeta _1,\zeta _2} )^c )(m)\neq \emptyset $, $X\cap \check C_{\left [\varphi _2, \zeta _2\right ]}\neq \emptyset $ and $X\cap \check C_{\left [\zeta _1,\varphi _2\right ]}\neq \emptyset $.
Hence we get
Hence we have proven the claim of step 2.
Step 3. Next we set
Clearly, we have $\tilde \Xi \in \hat {\mathcal B}_{\tilde F}([0,1])$. Note that
As a uniform limit of $[0,1]\ni t\mapsto V_{n}(t)\in {\mathcal A}$ (equation (5.21)), $[0,1]\ni t\mapsto V(t)\in {\mathcal A}$ is norm-continuous. Because $\tilde \Xi \in \hat {\mathcal B}_{\tilde F}([0,1])$, $[0,1]\ni t\mapsto \tau _{t,s}^{\tilde \Xi }\left ( V(t)\right )\in {\mathcal A}$ is also norm-continuous, for each $s\in [0,1]$. Therefore, for each $s\in [0,1]$, there is a unique norm-differentiable map $[0,1]\ni t \mapsto W^{(s)}(t) \in {\mathcal U}\left ( {\mathcal A}\right )$ such that
It is given by
Analogously, for each $s\in [0,1]$ and $n\in \mathbb {N}$, we define a unique norm-differentiable map from $[0,1]$ to $ {\mathcal U}\left ( {\mathcal A}\right )$ such that
It is given by
By the uniform convergence (5.21) and Lemma D.3, we have
From this and formulas (5.39) and (5.41), we obtain
This and Theorem D.3 4 for $\Xi ^{(1)}, \tilde \Xi \in {\mathcal B}_{\tilde F}([0,1])$ imply
for any $A\in {\mathcal A}$.
Note that for any $A\in {\mathcal A}$,
We used equation (D.10) for the second equality and equation (5.37) for the third. On the other hand, for any $A\in {\mathcal A}$, we have
Therefore, $\tau _{s,t}^{\left (\Lambda _{n}\right ), \tilde \Xi }\circ \mathop {\mathrm {Ad}}\nolimits ( W_{n}^{(s)}(t) ) (A)$ and $ \tau _{s,t}^{\left (\Lambda _{n}\right ), \Xi ^{(1)}} (A)$ satisfy the same differential equation. Also note that we have $\tau _{s,s}^{\left (\Lambda _{n}\right ), \tilde \Xi }\circ \mathop {\mathrm {Ad}}\nolimits ( W_{n}^{(s)}(s) ) (A)= \tau _{s,s}^{\left (\Lambda _{n}\right ), \Xi ^{(1)}} (A)=A$. Therefore, we get
By equation (5.44), we obtain
Taking the inverse, we get
Step 4. Combining equations (5.17) and (5.48), we have
By the definitions of $\Psi ^{(0)}$ and $\tilde \Xi $, we obtain decompositions
with $\alpha $s in the form of formulas (2.13) and (2.14). This completes the proof of the first part.
Step 5. Suppose that $\beta _{g}^{U}\left ( \Psi (X;t)\right )=\Psi (X;t)$ for any $X\in {\mathfrak S}_{{\mathbb Z}^2}$, $t\in [0,1]$ and $g\in G$. Then clearly we have $\beta _{g}^{U}\left ( \Psi ^{(0)}(X;t)\right )=\Psi ^{(0)}(X;t)$ for any $X\in {\mathfrak S}_{{\mathbb Z}^2}$, $t\in [0,1]$ and $g\in G$. By Theorem D.3 5, this implies $\tau _{1,0}^{\Psi ^{(0)}}{\beta _g^U}={\beta _g^U}\tau _{1,0}^{\Psi ^{(0)}}$. From the decomposition (5.50), this means that all of $\alpha _{\left [0,\theta _{1}\right ],\sigma }, \alpha _{\left (\theta _1,\theta _2\right ],\sigma ,\zeta }, \alpha _{\left (\theta _2,\theta _3\right ],\sigma ,\zeta }, \alpha _{\left (\theta _3,\frac \pi 2\right ],\zeta }$, $\sigma =L,R, \zeta =U,D$, commute with ${\beta _g^U}$. Because $\Pi _{X}$ commutes with $\beta _{g}^{U}$, $\tau _{t,s}^{\Psi }$ commutes with $\beta _{g}^{U}$ (Theorem D.3 5), and $\Psi ^{(1)}$ and $\Xi ^{(s)}$ are $\beta _{g}^{U}$-invariant from the definition (5.8). Therefore, from the definition (5.36), $\tilde \Xi $ is also $\beta _{g}^{U}$-invariant. Hence by Theorem D.3 5, $\tau _{0,1}^{ \tilde \Xi }$ commutes with ${\beta _g^U}$. The decomposition (5.50) then implies that $\alpha _{\left (\theta _{0.8},\theta _{1.2}\right ],\sigma ,\zeta }, \alpha _{\left (\theta _{1.8},\theta _{2.2}\right ],\sigma ,\zeta }, \alpha _{\left (\theta _{2.8},\theta _{3.2}\right ],\sigma ,\zeta }$, $\sigma =L,R, \ \zeta =U,D$, commute with ${\beta _g^U}$.
An analogous proof shows the following:
Proposition 5.5. Let $F\in {\mathcal F}_a$ be an F-function of the form $F(r)=\frac {\exp \left ( {-r^{\theta }}\right )}{(1+r)^{4}}$ with a constant $0<\theta <1$. Let $\Psi \in \hat {\mathcal B}_{F}([0,1])$ be a path of interactions satisfying $\Psi _1\in \hat {\mathcal B}_F([0,1])$. Define $\Psi ^{(0)}\in \hat {\mathcal B}_{F}([0,1])$ by
for each $X\in {\mathfrak S}_{{\mathbb Z}^2}, t\in [0,1]$. Then $ \left (\tau _{1,0}^{\Psi ^{(0)}}\right )^{-1}\tau _{1,0}^{\Psi }$ belongs to $\mathop {\mathrm {HAut}}\nolimits ({\mathcal A})$.
Proof. Define $\tilde F$ as in formula (5.3) with some $0<\theta '<\theta $. The same argument as in Theorem 5.2, step 2, implies that there exists $\Xi ^{(1)}\in \hat {\mathcal B}_{\tilde F}[0,1]$ with $\tilde F\in {\mathcal F}_a$, such that
This $\Xi ^{(1)}$ is given by formula (5.8) for current $\Psi $ and $\Psi ^{(1)}\left ( X; t\right ):=\Psi ^{(0)}\left ( X; t\right )-\Psi \left ( X; t\right )$. To prove the theorem, it suffices to show that $\tau _{0,1}^{ \Xi ^{(1)}}$ belongs to $\mathop {\mathrm {HAut}}\nolimits ({\mathcal A})$. Indeed, for any $0<\theta _0<\frac \pi 4$, as in Theorem 5.2, step 2, we have
To see this, note that if X in the last line has a nonzero contribution to the sum, then at least one of the following occurs:
(i) $X\cap C_{\left [\theta _{0}, \frac \pi 2\right ],U}\neq \emptyset $ and $X\cap H_{D}\neq \emptyset $.
(ii) $X\cap C_{\left [\theta _{0}, \frac \pi 2\right ],D}\neq \emptyset $ and $X\cap H_{U}\neq \emptyset $.
(iii) $X\subset C_{\left [0,\theta _{0}\right ]}$ and
(1) $X\cap C_{\left [0,\theta _{0}\right ],L}\neq \emptyset $ and $X\cap C_{\left [0,\theta _{0}\right ],R}\neq \emptyset $, or
(2) $X\subset C_{\left [0,\theta _{0}\right ], R}$, $X\cap \check C_{\left [0,\theta _{0}\right ]}\neq \emptyset $, $X\cap \check C_{\left [-\theta _{0},0\right ]}\neq \emptyset $ and $X{(m)}\cap \left ( C_{\left [0,\theta _{0}\right ], R}\right )^{c}\neq \emptyset $, or
(3) $X\subset C_{\left [0,\theta _{0}\right ], L}$, $X\cap \check C_{\left [\pi -\theta _{0},\pi \right ]}\neq \emptyset $, $X\cap \check C_{\left [\pi , \pi +\theta _{0}\right ]}\neq \emptyset $ and $X{(m)}\cap \left ( C_{\left [0,\theta _{0}\right ], L}\right )^{c}\neq \emptyset $.
Therefore, the summation in the second line of formula (5.53) is bounded by
from Lemmas 5.3 and 5.4, proving formula (5.53).
Therefore, as in step 3 of Theorem 5.2, setting
we obtain $\tau _{0,1}^{ \Xi ^{(1)}}=({\textrm {{inner}}})\circ \tau _{0,1}^{ \tilde \Xi }$. By the definition, $\tau _{0,1}^{ \tilde \Xi }$ decomposes as $\tau _{0,1}^{ \tilde \Xi }= \zeta _L\otimes \zeta _R$, with some $\zeta _\sigma \in \mathop {\mathrm {Aut}}\nolimits ({\mathcal A}_{C_{\left [0,\theta _0\right ],\sigma }} )$, $\sigma =L,R$. As this holds for any $0<\theta _0<\frac \pi 4$, we conclude $\tau _{0,1}^{ \Xi ^{(1)}}\in \mathop {\mathrm {HAut}}\nolimits ({\mathcal A})$.
Theorem 5.6. Let $F\in {\mathcal F}_a$ be an F-function of the form $F(r)=\frac {\exp \left ( {-r^{\theta }}\right )}{(1+r)^{4}}$ with a constant $0<\theta <1$. Let $\Psi \in \hat {\mathcal B}_{F}([0,1])$ be a path of interactions satisfying $\Psi _1\in \hat {\mathcal B}_F([0,1])$. If $\Psi $ is $\beta $-invariant, then $\tau _{1,0}^{\Psi }$ belongs to $\mathop {\mathrm {GUQAut}}\nolimits ({\mathcal A})$.
Proof. Define $\Psi ^{(0)}$ as in formula (5.51) for our $\Psi $. By Proposition 5.5, we have $ (\tau _{1,0}^{\Psi ^{(0)}} )^{-1}\tau _{1,0}^{\Psi }\in \mathop {\mathrm {HAut}}\nolimits ({\mathcal A})$. On the other hand, applying Theorem 5.2 to $\Psi ^{(0)}\in \hat {\mathcal B}_F([0,1])$, we see that $\tau _{1,0}^{\Psi ^{(0)}}$ belongs to $\mathop {\mathrm {SQAut}}\nolimits ({\mathcal A}).$ Note that $\Psi ^{(0)}(X;t)$ is nonzero only if $X\subset H_U$ or $X\subset H_D$, and it coincides with $\Psi (X;t)$ when it is nonzero. Therefore, if $\Psi $ is $\beta $-invariant, $\Psi ^{(0)}$ is $\beta _g^U$-invariant. Therefore, by Theorem 5.2, we have $\tau _{1,0}^{\Psi ^{(0)}}\in \mathop {\mathrm {GSQAut}}\nolimits ({\mathcal A})$. Hence we have $\tau _{1,0}^{\Psi }\in \mathop {\mathrm {GUQAut}}\nolimits ({\mathcal A})$.
Proof of Theorem 1.5.
Let $\Phi _0\in {\mathcal P}_{UG}$ be the fixed trivial interaction with a unique gapped ground state. Its ground state $\omega _0:=\omega _{\Phi _0}$ is of a product form (formula (2.18)). For any $\Phi \in {\mathcal P}_{SL\beta }$, we have $\Phi _0\sim \Phi $. Then by Theorem 5.1, there exists some $\Psi \in \hat {\mathcal B}_F([0,1])$ with $\Psi _{1}\in \hat {\mathcal B}_{F}([0,1])$ for some $F\in {\mathcal F}_a$ of the form $F(r)=\frac {\exp \left ( {-r^{\theta }}\right )}{(1+r)^{4}}$ with $0<\theta <1$, such that $\omega _{\Phi }=\omega _{\Phi _0}\circ \tau _{1,0}^{\Psi }$. From Theorem 5.2, $\tau _{1,0}^\Psi $ belongs to $\mathop {\mathrm {SQAut}}\nolimits ({\mathcal A})$. Because $\Phi \in {\mathcal P}_{SL\beta }$, $\omega _{\Phi }=\omega _{\Phi _0}\circ \tau _{1,0}^{\Psi }$ is $\beta $-invariant. Then, by Theorem 3.1, $\mathop {\mathrm {IG}}\nolimits (\omega _{\Phi })$ is not empty. Therefore, we may define $h_\Phi :=h(\omega _{\Phi })$ by Definition 2.18.
To see that $h_\Phi $ is an invariant of $\sim _\beta $, set $\Phi _1,\Phi _2\in {\mathcal P}_{SL\beta }$ with $\Phi _1\sim _\beta \Phi _2$. Then by Theorem 5.1, there exists some $\beta $-invariant $\Psi \in \hat {\mathcal B}_F([0,1])$ with $\Psi _{1}\in \hat {\mathcal B}_F([0,1])$ for some $F\in {\mathcal F}_a$ of the form $F(r)=\frac {\exp \left ( {-r^{\theta }}\right )}{(1+r)^{4}}$ with a constant $0<\theta <1$ such that $\omega _{\Phi _2}=\omega _{\Phi _1}\circ \tau _{1,0}^{\Psi }$. Applying Theorem 5.6 to this $\Psi $, we see that $\tau _{1,0}^{\Psi }$ belongs to $\mathop {\mathrm {GUQAut}}\nolimits ({\mathcal A})$. Then Theorem 4.1 implies
proving the stability.
6 Automorphisms with factorised $d^{0}_{H_{U}}\alpha $
When $\alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega )$ has some good factorisation property with respect to the action of $\beta _{g}^{U}$, the index $h(\omega )$ can be calculated without going through GNS representations.
Definition 6.1. For $\alpha \in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}\right )$, we set
We say that $d^{0}_{H_{U}}\alpha $ is factorised into left and right if there are automorphisms $\gamma _{g,\sigma }\in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}_{H_{\sigma }}\right )$, $g\in G, \sigma =L,R$, such that
For known examples of $2$-dimensional SPT phases like [Reference Chen, Gu, Liu and WenCGLW, Reference Miller and MiyakeMM, Reference YoshidaY, Reference Dijkgraaf and WittenDW] or injective projected entangled-pair states [Reference Molnar, Ge, Schuch and CiracMGSC], this property holds. Namely, with a bit of effort, states in these models can be written in the form $\omega _0\alpha $, where $\omega _0$ is a pure infinite tensor product state and $\alpha $ is an automorphism satisfying the property in Definition 6.1. From such an automorphism, we can derive an outer action of G.
Lemma 6.2. Let $\alpha \in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}\right )$ be an automorphism. Suppose that $d^{0}_{H_{U}}\alpha $ is factorised into left and right – that is, there are automorphisms $\gamma _{g,\sigma }\in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}_{H_{\sigma }}\right )$, $g\in G, \sigma =L,R$, such that
Then there are unitaries $v_{\sigma }(g,h)\in {\mathcal U}\left ( {\mathcal A}_{H_{\sigma }}\right )$, $g,h\in G, \sigma =L,R$, such that
Proof. Because $\beta _{g}^{U}$ is a group action, substituting equation (6.3) we get
By Lemma B.1, we then see that there are unitaries $v_{\sigma }(g,h)\in \mathop {\mathrm {Aut}}\nolimits \left ( {\mathcal A}_{H_{\sigma }}\right )$, $g\in G, \sigma =L,R$, satisfying equation (6.4).
It is well known that a third cohomology class can be associated to cocycle actions [Reference ConnesC, Reference JonesJ].
Lemma 6.3. Let $\alpha \in \mathop {\mathrm {Aut}}\nolimits \left ({\mathcal A}\right )$ be an automorphism such that $d^{0}_{H_{U}}\alpha $ is factorised into left and right as in equation (6.3). Let $v_{\sigma }(g,h)\in {\mathcal U}\left ( {\mathcal A}_{H_{\sigma }}\right )$, $g,h\in G, \sigma =L,R$, be unitaries satisfying equation (6.4). Then there is some $c_{{\sigma }}\in C^{3}(G,{\mathbb T})$, $\sigma =L,R$, such that
Proof. By equation (6.4), we have
for $ \hat \gamma _{g,\sigma }:=\gamma _{g,{\sigma }}\beta _{g}^{{\sigma }U} $. Using this, we have
Because ${\mathcal A}'\cap {\mathcal A}=\mathbb I_{{\mathcal A}}$, it must be the case that $\hat \gamma _{g,\sigma }\left ( v_{\sigma }(h,k)\right ) v_{\sigma }(g,hk)$ and $v_{\sigma }(g,h)v_{\sigma }(gh,k)$ are proportional to each other, proving the lemma.
By the same argument as in Lemma 2.4, we can show that this $c_{R}$ is actually a $3$-cocycle. If $\omega \in \mathop {\mathcal {SL}}\nolimits $ is given by an automorphism $\alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega )$ with factorised $d^{0}_{H_{U}}\alpha $, and if $\omega _{0}$ is invariant under $\beta _{g}^{U}$, then we have $h(\omega )=[c_{R}]_{H^{3}\left (G,{\mathbb T}\right )}$, for $c_R$ given in Lemma 6.3.
Theorem 6.4. Let $\omega _{0}$ be a reference state of the form in formula (2.18), and assume that $\omega _{0}\circ \beta _{g}^{U}=\omega _{0}$ for any $g\in G$. Let $\alpha \in \mathop {\mathrm {QAut}}\nolimits \left ( {\mathcal A}\right )$ be an automorphism. Suppose that $d^{0}_{H_{U}}\alpha $ is factorised into left and right as in equation (6.3) with some $\gamma _{g,\sigma }\in \mathop {\mathrm {Aut}}\nolimits ({\mathcal A}_{C_{\theta _{0}},\sigma } )$ and $0<\theta _{0}<\frac \pi 2$, for $\sigma =L,R$. Let $v_{\sigma }(g,h)\in {\mathcal U}\left ( {\mathcal A}_{H_{\sigma }}\right )$, $g,h\in G, \sigma =L,R$, be unitaries satisfying equation (6.4) and $c_{R}\in C^{3}(G,{\mathbb T})$ satisfying equation (6.6) for these $v_{R}(g,h)$ which are given in Lemma 6.2 and Lemma 6.3. Then we have $\omega _{0}\circ \alpha \in \mathop {\mathcal {SL}}\nolimits $ with $\mathop {\mathrm {IG}}\nolimits (\omega _{0}\circ \alpha )\neq \emptyset $, $c_{R}\in Z^{3}(G,{\mathbb T})$, and $h(\omega _{0}\circ \alpha )=[c_{R}]_{H^{3}\left (G,{\mathbb T}\right )}$.
Remark 6.5. The situation of this theorem is special. We do not expect that it always occurs.
Proof. That $\omega _{0}\circ \alpha \in \mathop {\mathcal {SL}}\nolimits $ is by definition. Because
our $ v_{\sigma }(g,h)$ belongs to ${\mathcal U}({\mathcal A}_{C_{\theta _{0}},\sigma } )$. Because
and
with $\gamma _{g,\sigma }\in \mathop {\mathrm {Aut}}\nolimits ({\mathcal A}_{C_{\theta _{0},\sigma }} )$, we have $(\alpha ^{-1}\beta _{g}^{U}\alpha )\in \mathop {\mathrm {IG}}\nolimits (\omega _{0}\alpha , \theta _{0})$, and $ (\gamma _{g,\sigma } )\in {\mathcal T}(\theta _{0}, \alpha ^{-1}\beta _{g}^{U}\alpha )$. Clearly $\alpha \in \mathop {\mathrm {EAut}}\nolimits (\omega _{0}\circ \alpha )$, and there is $(\alpha _L,\alpha _R,\Theta )\in {\mathcal D}_{\alpha }^{\theta _{0}}$ because $\alpha \in \mathop {\mathrm {QAut}}\nolimits ({\mathcal A})$. Set $\gamma _{g}:=\gamma _{g,L}\otimes \gamma _{g,R}$. From Lemma 2.1, there is some $W_{g}\in {\mathcal U}({\mathcal H}_{0}) g\in G$ satisfying
In particular, because $ v_{R}(h,k)$ belongs to ${\mathcal U}({\mathcal A}_{( C_{\theta _{0}})_{R}} )$, $\Theta \in \mathop {\mathrm {Aut}}\nolimits ({\mathcal A}_{C_{\theta _{0}}^{c}})$, and $\gamma _g\beta _g^U$ preserves ${\mathcal A}_{\left ( C_{\theta _{0}}\right )_{R}}$, we have
On the other hand, equation (6.4) means
From equations (6.12) and (6.14), we have
Now from equations (6.6) and then (6.13), we obtain
This means
in Definition 2.5. Hence we get $c_{R}\in Z^{3}(G,{\mathbb T})$, and $h(\omega _{0}\circ \alpha )=[c_{R}]_{H^{3}\left (G,{\mathbb T}\right )}$.
A Basic notation
For a finite set S, $\#S$ indicates the number of elements in S. For $t\in {\mathbb R}$, $[t]$ denotes the smallest integer less than or equal to t.
For a Hilbert space ${\mathcal H}$, $B({\mathcal H})$ denotes the set of all bounded operators on ${\mathcal H}$. If $V:{\mathcal H}_1\to {\mathcal H}_2$ is a linear map from a Hilbert space ${\mathcal H}_1$ to another Hilbert space ${\mathcal H}_2$, then $\mathop {\mathrm {Ad}}\nolimits (V):B({\mathcal H}_1)\to B({\mathcal H}_2)$ denotes the map $\mathop {\mathrm {Ad}}\nolimits (V)(x):=V x V^*$, $x\in B({\mathcal H}_1)$. Occasionally we write $\mathop {\mathrm {Ad}}\nolimits _V$ instead of $\mathop {\mathrm {Ad}}\nolimits (V)$. For a $C^{*}$-algebra ${\mathcal B}$ and $v\in {\mathcal B}$, we set $\mathop {\mathrm {Ad}}\nolimits (v)(x):=\mathop {\mathrm {Ad}}\nolimits _{v}(x):=vxv^{*}$, $x\in {\mathcal B}$.
For a state $\omega , \varphi $ on a $C^{*}$-algebra ${\mathcal B}$, we write $\omega \sim _{\text {q.e.}}\varphi $ when they are quasiequivalent (see [Reference Bratteli and RobinsonBR1]). We also write $\omega \simeq \varphi $ when they are equivalent. We denote by $\mathop {\mathrm {Aut}}\nolimits {\mathcal B}$ the group of automorphisms on a $C^{*}$-algebra ${\mathcal B}$. The group of inner automorphisms on a unital $C^{*}$-algebra ${\mathcal B}$ is denoted by $\mathop {\mathrm {Inn}}\nolimits {\mathcal B}$. For $\gamma _1,\gamma _2\in \mathop {\mathrm {Aut}}\nolimits ({\mathcal B})$, $\gamma _1=({\textrm {{inner}}})\circ \gamma _2$ means there is some unitary u in ${\mathcal B}$ such that $\gamma _1=\mathop {\mathrm {Ad}}\nolimits (u)\circ \gamma _2$. For a unital $C^{*}$-algebra ${\mathcal B}$, the unit of ${\mathcal B}$ is denoted by $\mathbb I_{{\mathcal B}}$. For a Hilbert space we write $\mathbb I_{{\mathcal H}}:=\mathbb I_{{\mathcal B}({\mathcal H})}$. For a unital $C^{*}$-algebra ${\mathcal B}$, by ${\mathcal U}({\mathcal B})$ we mean the set of all unitary elements in ${\mathcal B}$. For a Hilbert space we write ${\mathcal U}({\mathcal H})$ for ${\mathcal U}({\mathcal B}({\mathcal H}))$.
For a state $\varphi $ on ${\mathcal B}$ and a $C^{*}$-subalgebra ${\mathcal C}$ of ${\mathcal B}$, $\varphi \rvert _{{\mathcal C}}$ indicates the restriction of $\varphi $ to ${\mathcal C}$.
To denote the composition of automorphisms $\alpha _1, \alpha _2$, all of $\alpha _1\circ \alpha _2, \alpha _1\alpha _2, \alpha _1\cdot \alpha _2$ are used. Frequently, the first one serves as a bracket to visually separate a group of operators.
B Automorphisms on UHF-algebras
Lemma B.1. Let $\mathfrak A, \mathfrak B$ be UHF-algebras. If automorphisms $\gamma _{\mathfrak A}\in \mathop {\mathrm {Aut}}\nolimits (\mathfrak A), \gamma _{\mathfrak B}\in \mathop {\mathrm {Aut}}\nolimits (\mathfrak B)$ and a unitary $W\in {\mathcal U}\left ({\mathfrak A}\otimes \mathfrak B\right )$ satisfy
then there are unitaries $u_{\mathfrak A}\in {\mathcal U}(\mathfrak A)$ and $u_{\mathfrak B}\in {\mathcal U}(\mathfrak B)$ such that
Proof. Fix some irreducible representations $({\mathcal H}_{\mathfrak A},\pi _{\mathfrak A}), ({\mathcal H}_{\mathfrak B},\pi _{\mathfrak B})$, of $\mathfrak A, \mathfrak B$. We claim that there are unitaries $v_{\mathfrak A}\in {\mathcal U}({\mathcal H}_{\mathfrak A})$ and $v_{{\mathfrak B}}\in {\mathcal U}({\mathcal H}_{{\mathfrak B}})$ such that
To see this, note that
From this, $\pi _{{\mathfrak A}}\circ \gamma _{{\mathfrak A}}$ (resp., $\pi _{{\mathfrak B}}\circ \gamma _{{\mathfrak B}}$) is quasiequivalent to $\pi _{{\mathfrak A}}$ (resp., $\pi _{{\mathfrak B}}$). Because $\pi _{{\mathfrak A}}$ and $\pi _{{\mathfrak B}}$ are irreducible, by the Wigner theorem there are unitaries $v_{\mathfrak A}\in {\mathcal U}({\mathcal H}_{\mathfrak A})$ and $v_{{\mathfrak B}}\in {\mathcal U}({\mathcal H}_{{\mathfrak B}})$ satisfying equation (B.3).
We then have
Because $\pi _{{\mathfrak A}}\otimes \pi _{{\mathfrak B}}$ is irreducible, there is a $c\in {\mathbb T}$ such that
We claim there is a unitary $u_{\mathfrak B}\in {\mathcal U}(\mathfrak B)$ such that
Choose a unit vector $\xi \in {\mathcal H}_{\mathfrak A}$ with $\left \langle \xi , v_{{\mathfrak A}}\xi \right \rangle \neq 0$. For each $x\in {\mathcal B}({\mathcal H}_{\mathfrak A}\otimes {\mathcal H}_{{\mathfrak B}})$, the map
is a bounded sesquilinear form. Therefore, there is a unique $\Phi _\xi (x)\in {\mathcal B}({\mathcal H}_{\mathfrak B})$ such that
The map $\Phi _\xi :{\mathcal B}\left ({\mathcal H}_{\mathfrak A}\otimes {\mathcal H}_{{\mathfrak B}}\right )\to {\mathcal B}({\mathcal H}_{\mathfrak B})$ is linear and
Because W belongs to $\mathfrak A\otimes \mathfrak B$, there are sequences
such that
Because of formula (B.10), we have
Note that
Therefore, we have
where $\overline {\cdot }^{n}$ denotes the norm closure. Because $\pi _{{\mathfrak B}}\left (\mathfrak B\right )$ is norm-closed, we have $\overline {\pi _{\mathfrak B}\left (\mathfrak B\right )}^n =\pi _{\mathfrak B}\left (\mathfrak B\right )$. Hence we have $v_{{\mathfrak B}}\in \pi _{\mathfrak B}\left (\mathfrak B\right )$ – that is, there is a unitary $u_{\mathfrak B}\in \mathfrak B$ such that $v_{{\mathfrak B}}=\pi _{\mathfrak B}\left ( u_{{\mathfrak B}}\right )$.
We then have
As ${\mathfrak B}$ is simple, $\mathop {\mathrm {Ad}}\nolimits _{u_{{\mathfrak B}}}(X)=\gamma _{\mathfrak B}(X)$ for all $ X\in {\mathfrak B}$.
The proof for ${\mathfrak A}$ is the same.
C F-functions
In this section, we collect various estimates about F-functions. These estimates are useful for the proof of the factorisation property. Let us first start from the definition:
Definition C.1. An F-function F on $\left ({{\mathbb Z}^2}, \mathrm {d}\right )$ is a nonincreasing function $F:[0,\infty )\to (0,\infty )$ such that
(i) $\left \lVert F\right \rVert :=\sup _{x\in {{\mathbb Z}^2}}\left ( \sum _{y\in {{\mathbb Z}^2}}F\left ( {\mathrm {d}}(x,y)\right )\right )<\infty $ and
(ii) $C_{F}:=\sup _{x,y\in {{\mathbb Z}^2}}\left ( \sum _{z\in {{\mathbb Z}^2}} \frac {F\left ( {\mathrm {d}}\left (x,z\right )\right ) F\left ( {\mathrm {d}}\left (z,y\right )\right )}{F\left ( {\mathrm {d}}\left (x,y\right )\right )}\right )<\infty $.
These properties are called uniform integrability and the convolution identity, respectively.
We denote by ${\mathcal F}_{a}$ a class of F-functions which decay quickly.
Definition C.2. We say an F-function F belongs to ${\mathcal F}_{a}$ if
(i) for any $k\in {\mathbb N}\cup \{0\}$ and $0<\vartheta \le 1$, we have
(C.1)$$ \begin{align} \kappa_{\vartheta,k, F}:=\sum_{n=0}^{\infty} (n+1)^{k}\left ( F(n)\right )^{\vartheta}<\infty \end{align} $$and(ii) for any $0<\vartheta <1$, there is an F-function $\tilde F_{\vartheta }$ such that
(C.2)$$ \begin{align} \max\left\{ F\left (\frac r 3\right ), \left ( F\left ( \left [ \frac r 3 \right ] \right )\right )^{\vartheta}\right\}\le \tilde F_{\vartheta}(r),\quad r\ge 0. \end{align} $$
For example, a function $F(r)=\frac {\exp \left ( {-r^{\theta }}\right )}{(1+r)^{4}}$ with a constant $0<\theta <1$ belongs to ${\mathcal F}_a$. (See [Reference Nachtergaele, Sims and YoungNSY, Appendix] for (i). The proof of (ii) is rather standard.)
In this appendix, we derive inequalities about $F\in {\mathcal F}_{a}$. In order for that, the following lemma is useful. We will freely identify ${\mathbb C}$ and ${\mathbb R}^{2}$ in an obvious manner.
Lemma C.3. For $0\le \theta _1<\theta _2\le 2\pi $, $c>0$, and $r\ge 0$, set
Then we have
In particular, we have
Proof. Because the diameter of a $2$-dimensional unit square is $\sqrt 2$, any unit square B of ${\mathbb Z}^2$ with $B\cap S_{r,c}^{\left [\theta _1,\theta _2\right ]}\cap {\mathbb Z}^2\neq \emptyset $ satisfies $B\subset \hat S_{r,c}^{[\theta _1,\theta _2 ]}(\sqrt 2 )$. Therefore, we have
Note that the area of $ \hat S_{r,c}^{\left [\theta _1,\theta _2\right ]}\left (\sqrt 2\right )$, denoted by $\left \lvert \hat S_{r,c}^{\left [\theta _1,\theta _2\right ]}\left (\sqrt 2\right )\right \rvert $, is less than
if $r>\sqrt 2$. For $r\le \sqrt 2$, we have
Hence, in any case we have
Substituting this into equation (C.6), we obtain
On the other hand, we have
For an F-function $F\in {\mathcal F}_{a}$, define a function $G_{F}$ on $t\ge 0$ by
Note that by uniform integrability, the supremum is finite for all t. In particular, for any $0<\theta <1$ we have
Substituting this, for any $0<\alpha \le 1$, $0<\theta ,\varphi <1$, and $k\in {\mathbb N}\cup \{0\}$, we have
For any $0<c\le 1$, we have
We also have, for $m\in {\mathbb Z}_{\ge 0}$ and $0<c\le 1$,
Recall formulas (5.25) and (5.26).
Lemma C.4. Let $\varphi _1<\varphi _2<\varphi _3<\varphi _4$ with $\varphi _4-\varphi _1<2\pi $. Then we have
Proof. Let $x=s_1e^{i\phi _1}\in \check C_{\left [\varphi _1,\varphi _2\right ]}$ and $y=s_2e^{i\phi _2}\in \check C_{\left [\varphi _3,\varphi _4\right ]}$, with $s_1,s_2\ge 0$. If $\cos \left ( \phi _2-\phi _1\right )\ge 0$, then we have
If $\cos \left ( \phi _2-\phi _1\right )<0$, then we have
Hence for any $x=s_1e^{i\phi _1}\in \check C_{\left [\varphi _1,\varphi _2\right ]}$ and $y=s_2e^{i\phi _2}\in \check C_{\left [\varphi _3,\varphi _4\right ]}$ with $s_1,s_2\ge 0$, we have
Substituting this estimate, we obtain
We used Lemma C.3 to bound $\#\left ( S_{r,1}^{\left [0,\frac \pi 2\right ]}\cap {\mathbb Z}^2 \right )$ and so on, and in the last inequality we used equation (C.15).
Set
and
Lemma C.5. Set $\varphi , \theta _1,\theta _2\in {\mathbb R}$ with $\theta _1<\theta _2$ and $0<\left \lvert \varphi -\theta _0\right \rvert <\frac \pi 2$ for all $\theta _0\in [\theta _1,\theta _2] $. Then we have
for any $m\in {\mathbb N}\cup \{0\}$.
Proof. For each $r\in {\mathbb Z}$, set
Note that $s\cos (\theta -\varphi )$ is a projection of $se^{i\theta }$ onto $L_\varphi $ and $\left \lvert s\sin (\theta -\varphi )\right \rvert $ is the distance of $se^{i\theta }$ from the line including $L_\varphi $. Then we have
Because the diameter of a $2$-dimensional unit square is $\sqrt 2$, any unit square B of ${\mathbb Z}^2$ with $B\cap T_{\varphi , r,m} \cap {\mathbb Z}^2\neq \emptyset $ satisfies $B\subset \hat T_{\varphi , r,m}\left (\sqrt 2\right )$. Therefore, using formula (C.26) we have
On the other hand, we have
If $x\in \check C_{\left [\theta _1,\theta _2\right ]}$, we have $x=r_0 e^{i\theta _0}$ for some $r_0\ge 0$ and $\theta _0\in [\theta _1,\theta _2]$. By the assumption, we have $0<|\theta _0-\varphi |<\frac \pi 2$, hence $0<\cos (\varphi -\theta _0)<1$. Therefore, for any $r\in {\mathbb R}$, we have
Therefore, for any $x\in \check C_{\left [\theta _1,\theta _2\right ]}$ and $y\in T_{\varphi , r,m}$, we have
From this and formulas (C.26) and (C.28), for any $x=r_0 e^{i\theta _0}\in C_{\left [\theta _1,\theta _2\right ]}$, $r_0\ge 0$, we have
We then get
We used formula (C.16).
D Quasilocal automorphisms
In this appendix we collect some results from [Reference Nachtergaele, Sims and YoungNSY] and prove Theorem 5.1.
Definition D.1. A norm-continuous interaction on ${\mathcal A}$ defined on an interval $[0,1]$ is a map $\Phi :{\mathfrak S}_{{\mathbb Z}^2}\times [0,1]\to {\mathcal A}_{\textrm {loc}}$ such that
(i) for any $t\in [0,1]$, $\Phi (\cdot , t):{\mathfrak S}_{{\mathbb Z}^2}\to {\mathcal A}_{\textrm {loc}}$ is an interaction and
(ii) for any $Z\in {\mathfrak S}_{{\mathbb Z}^2}$, the map $\Phi (Z,\cdot ):[0,1]\to {\mathcal A}_{Z}$ is norm-continuous.
To ensure that the interactions induce quasilocal automorphisms we need to impose sufficient decay properties on the interaction strength.
Definition D.2. Let F be an F-function on $\left ({{\mathbb Z}^2},\mathrm {d}\right )$. We denote by ${\mathcal B}_{F}([0,1])$ the set of all norm-continuous interactions $\Phi $ on ${\mathcal A}$ defined on an interval $[0,1]$ such that the function $\left \lVert \Phi \right \rVert _{F}: [0,1]\to {\mathbb R}$ defined by
is uniformly bounded – that is, $\sup _{t\in \left [0,1\right ]}\left \lVert \Phi \right \rVert (t)<\infty $. It follows that $t \mapsto \left \lVert \Phi \right \rVert _F(t)$ is integrable, and we set
with $C_F$ given in Definition C.1. We also set
and denote by $\hat {\mathcal B}_{F}([0,1])$ the set of all $\Phi \in {\mathcal B}_{F}([0,1])$ with $\left \lVert \left \lvert \Phi \right \rVert \right \rvert _F<\infty $.
We will need some more notation. For $\Phi \in {\mathcal B}_{F}([0,1])$ and $0\le m\in {\mathbb R}$, we introduce a path of interactions $\Phi _{m}$ by
An interaction gives rise to local (and here, time-dependent) Hamiltonians via
We denote by $U_{\Lambda ,\Phi }(t;s)$, the solution of
We define corresponding automorphisms $\tau _{t,s}^{(\Lambda ),\Phi }, \hat {\tau }_{t,s}^{(\Lambda ), \Phi }$ on ${\mathcal A}$ by
with $A \in {\mathcal A}$. Note that
by the uniqueness of the solution of the differential equation.
Theorem D.3 [Reference Nachtergaele, Sims and YoungNSY]
Let F be an F-function on $\left ({{\mathbb Z}^2}, \mathrm {d}\right )$. Suppose that $\Phi \in {\mathcal B}_F([0,1])$. Then the following hold:
1. The limits
(D.11)$$ \begin{align} \tau_{t,s}^{\Phi}(A):=\lim_{\Lambda \nearrow{{\mathbb Z}^2}}\tau_{t,s}^{(\Lambda), \Phi}(A),\qquad \hat \tau_{t,s}^{\Phi}(A):=\lim_{\Lambda \nearrow{{\mathbb Z}^2}}\hat \tau_{t,s}^{(\Lambda), \Phi}(A),\quad A\in{\mathcal A}, \ t,s\in[0,1], \end{align} $$exist and define strongly continuous families of automorphisms on ${\mathcal A}$ such that $\hat \tau _{t,s}^{\Phi }=\tau _{s,t}^{\Phi }={\tau _{t,s}^{\Phi }}^{-1}$ and(D.12)$$ \begin{align} \hat \tau_{t,s}^{\Phi}\circ\hat \tau_{s,u}^{\Phi}=\hat \tau_{t,u}^{\Phi},\qquad \tau_{t,t}^{\Phi}=\mathop{\mathrm{id}}\nolimits_{{\mathcal A}}, \quad t,s,u\in[0,1]. \end{align} $$2. For any $X,Y\in {\mathfrak S}_{{\mathbb Z}^2}$ with $X\cap Y=\emptyset $, the bound
(D.13)$$ \begin{align} \left \lVert \left[ \tau_{t,s}^{\Phi}(A), B \right] \right \rVert \le \frac{2\left \lVert A\right \rVert\left \lVert B\right \rVert}{C_{F}}\left ( e^{2I_F(\Phi)}-1\right )\left \lvert X\right \rvert G_{F}\left ( d(X,Y)\right ) \end{align} $$holds for all $A\in {\mathcal A}_{X}$, $B\in {\mathcal A}_{Y}$, and $t,s\in [0,1]$.If $\Lambda \in {\mathfrak S}_{{\mathbb Z}^2}$ and $X \cup Y \subset \Lambda $, a similar bound holds for $\tau _{t,s}^{(\Lambda ),\Phi }$.
3. For any $X\in {\mathfrak S}_{{\mathbb Z}^2}$, we have
(D.14)$$ \begin{align} &\left \lVert \Delta_{X(m)}\left ( \tau_{t,s}^{\Phi}(A)\right ) \right \rVert \le \frac{8\left \lVert A\right \rVert}{C_{F}}\left ( e^{2I_F(\Phi)}-1\right )\left \lvert X\right \rvert G_{F}\left ( m\right ), \end{align} $$for $A\in {\mathcal A}_{X}$. Here we set $\Delta _{X(0)}:=\Pi _{X}$ and $\Delta _{X(m)}:=\Pi _{X(m)}-\Pi _{X(m-1)}$ for $m\in {\mathbb N}$. A similar bound holds for $\tau _{t,s}^{(\Lambda ),\Phi }$. (See formula (C.12) for the definition of $G_F$.)4. For any $X,\Lambda \in {\mathfrak S}\left ({\mathbb Z}^2\right )$, with $X\subset \Lambda $, and $A \in {\mathcal A}_X$, we have
(D.15)$$ \begin{align} \left \lVert \tau_{t,s}^{(\Lambda), \Phi}(A)-\tau_{t,s}^{\Phi}(A) \right \rVert \le\frac{2}{C_{F}} \left \lVert A\right \rVert e^{2I_F(\Phi)}I_F(\Phi) \left \lvert X\right \rvert G_{F}\left ( d\left ( X,{{\mathbb Z}^2}\setminus\Lambda\right ) \right ). \end{align} $$5. If $\beta _{g}^U\left ( \Phi (X;t)\right )=\Phi (X;t)$ for any $X\in {\mathfrak S}_{{\mathbb Z}^2}$, $t\in [0,1]$, and $g\in G$, then we have $\beta _g^U\circ \tau _{t,s}^{ \Phi }=\tau _{t,s}^{\Phi }\circ \beta _g^U$ for any $t,s\in [0,1]$ and $g\in G$,
Proof. Item 1 is [Reference Nachtergaele, Sims and YoungNSY, Theorem 3.5], and 2 and 4 follow from Corollary 3.6 of the same paper by, respectively, a straightforward bounding of $D(X,Y)$ and the summation in [Reference Nachtergaele, Sims and YoungNSY, equation (3.80)]. Item 3 can be obtained using 2 and [Reference Nachtergaele, Sims and YoungNSY, Corollary 4.4].
Suppose that ${\beta _g^U}\left ( \Phi (X;t)\right )=\Phi (X;t)$ for any $X\in {\mathfrak S}_{{\mathbb Z}^2}$, $t\in [0,1]$, and $g\in G$. Then we have
and ${\beta _g^U}\left ( U_{\Lambda ,\Phi }(s;s)\right )=\mathbb I$. Hence ${\beta _g^U}\left ( U_{\Lambda ,\Phi }(t;s)\right )$ and $U_{\Lambda ,\Phi }(t;s)$ satisfy the same differential equation and initial condition. Therefore we get ${\beta _g^U}\left ( U_{\Lambda ,\Phi }(t;s)\right )=U_{\Lambda ,\Phi }(t;s)$. From this, we obtain ${\beta _g^U}\tau _{t,s}^{(\Lambda ), \Phi }=\tau _{t,s}^{(\Lambda ), \Phi }{\beta _g^U}$, and taking $\Lambda \uparrow {\mathbb Z}^2$, we obtain ${\beta _g^U}\circ \tau _{t,s}^{ \Phi }=\tau _{t,s}^{\Phi }\circ {\beta _g^U}$.
The following is slightly strengthened version of [Reference Nachtergaele, Sims and YoungNSY, Assumption 5.15]:
Assumption D.4 [Reference Nachtergaele, Sims and YoungNSY]
We assume that the family of linear maps $\{{\mathcal K}_t:{\mathcal A}_{\textrm {loc}}\to {\mathcal A}\}_{t\in \left [0,1\right ]}$ is norm-continuous and satisfies the following: There is a family of linear maps $\left \{ {\mathcal K}_t^{(n)} : {\mathcal A}_{\Lambda _n} \to {\mathcal A}_{\Lambda _n} \right \}_{t\in \left [0,1\right ]} $ for each $n\ge 1$ such that the following are true:
(i) For each $n\ge 1$, the family $\left \{{\mathcal K}_t^{(n)} : {\mathcal A}_{\Lambda _n}\to {\mathcal A}_{\Lambda _n}\right \}_{t\in \left [0,1\right ]}$ satisfies the following conditions:
(a) For each $t\in [0,1]$, $\left ( {\mathcal K}_t^{(n)}(A)\right )^*= {\mathcal K}_t^{(n)}(A^*)$ for all ${\mathcal A}_{\Lambda _n}$.
(b) For each $A\in {\mathcal A}_{\Lambda _n}$, the function $[0,1]\ni t\to {\mathcal K}_t^{(n)}(A)$ is norm-continuous.
(c) For each $t\in [0,1]$, the map ${\mathcal K}_t^{(n)}: {\mathcal A}_{\Lambda _n}\to {\mathcal A}_{\Lambda _n}$ is norm-continuous, and moreover, this continuity is uniform on $[0,1]$.
(ii) There is some $p\ge 0$ and a constant $B_1>0$ for which, given any $X\in {\mathfrak S}_{{\mathbb Z}^2}$ and $n\ge 1$ large enough so that $X\subset \Lambda _n$,
$$\begin{align*}\left \lVert {\mathcal K}^{(n)}_t(A)\right \rVert\le B_1 \left \lvert X\right \rvert^p\left \lVert A \right \rVert,\quad \text{ for all } A\in{\mathcal A}_{X} \quad\text{and}\quad t\in [0,1]. \end{align*}$$(iii) There is some $q\ge 0$, a nonnegative, nonincreasing function G with $G(x)\to 0$ as $x\to \infty $, and a constant $C_1>0$ for which, given any sets $X,Y\in {\mathfrak S}_{{\mathbb Z}^2}$ and $n\ge 1$ large enough so that $X\cup Y\subset \Lambda _n$,
$$\begin{align*}\left \lVert\left [ {\mathcal K}^{(n)}_t(A), B\right ] \right \rVert\le C_1\left \lvert X\right \rvert^q\left \lVert A \right \rVert\left \lVert B\right \rVert G\left (\mathrm{d}(X,Y)\right ),\quad \text{ for all } A\in{\mathcal A}_{X},\ B\in{\mathcal A}_{Y}, \ t\in [0,1]. \end{align*}$$(iv) There is some $r\ge 0$, a nonnegative, nonincreasing function H with $H(x)\to 0$ as $x\to \infty $, and a constant $D_1>0$ for which, given any $X\in {\mathfrak S}_{{\mathbb Z}^2}$, there exists $N\ge 1$ such that for $n\ge N$,
$$\begin{align*}\left \lVert {\mathcal K}_t^{(n)} (A)-{\mathcal K}_t(A)\right \rVert \le D_{1} \left \lvert X\right \rvert^r \left \lVert A\right \rVert H\left ( \mathrm{d} \left(X,{\mathbb Z}^2\setminus \Lambda_n\right)\right ) \end{align*}$$for all $A\in {\mathcal A}_X$ and $t\in [0,1]$.
The following theorem is a slight modification of [Reference Nachtergaele, Sims and YoungNSY, Theorem 5.17]:
Theorem D.5. Set $F\in {\mathcal F}_a$, with $\tilde F_\theta $ in formula (C.2) for each $0<\theta <1$. Assume that $\{{\mathcal K}_t\}_{t\in \left [0,1\right ]}$ is a family of linear maps satisfying Assumption D.4, with $G=G_{F}$ in part (iii). (Recall Definition C.2 and formula (C.12)). Let $\Phi \in {\mathcal B}_F([0,1])$ be an interaction satisfying $\Phi _m\in {\mathcal B}_F([0,1])$ for $m=\max \{p,q,r\}$, where $p,q,r$ are numbers in Assumption D.4. Then the right-hand side of the sum
defines a path of interaction such that $\Psi \in {\mathcal B}_{\tilde F_{\theta }}([0,1])$, for any $0<\theta <1$. Furthermore, the formula
defines $\Psi ^{{(n)}}\in {\mathcal B}_{\tilde F_{\theta }}([0,1])$, for any $0<\theta <1$, such that $\Psi ^{(n)}\left ( Z, t \right )=0$ unless $Z\subset \Lambda _{n}$, and satisfies
For any $t,u\in [0,1]$, we have
Furthermore, if $\Phi _{m+k}\in \hat {\mathcal B}_{F}([0,1])$ for $k\in {\mathbb N}\cup \{0\}$, then we have $\Psi _k^{{(n)}}, \Psi _k\in \hat {\mathcal B}_{\tilde F_{\theta }}([0,1])$ for any $0<\theta <1$.
Proof. Because of $F\in {\mathcal F}_{a}$, we see from formula (C.14) that for any $0<\alpha <1$ and $k\in {\mathbb N}$, $G_{F}^{\alpha }$ has a finite k-moment. We also recall formulas (C.2) and (C.14) to see that
for any $0<\alpha ,\theta ',\varphi <1$. As this holds for any $0<\alpha ,\theta ',\varphi <1$, the condition in [Reference Nachtergaele, Sims and YoungNSY, Theorem 5.17(ii)] holds for any $\tilde F_{\theta }$. Therefore, from [Reference Nachtergaele, Sims and YoungNSY, Theorem 5.17(ii)], we get $\Psi ,\Psi ^{(n)}\in {\mathcal B}_{\tilde F_{\theta }}\left ([0,1]\right )$ and $\Psi ^{(n)}$ converges locally in F-norm to $\Psi $ with respect to $\tilde F_{\theta }$, for any $0<\theta <1$.
From [Reference Nachtergaele, Sims and YoungNSY, Theorem 5.13] we have the implication
(see also [Reference Nachtergaele, Sims and YoungNSY, equation (5.101)]. Therefore, from [Reference Nachtergaele, Sims and YoungNSY, Theorem 3.8], we obtain equation (D.20).
By the proofs of [Reference Nachtergaele, Sims and YoungNSY, Theorems 5.17 and 5.13, equation (5.87)], if $\Phi _{k+m}\in \hat {\mathcal B}_{F}([0,1])$ for some $k\in {\mathbb N}$, then we have $\Psi _k^{{(n)(s)}}, \Psi _k^{{(s)}}\in \hat {\mathcal B}_{\tilde F}([0,1])$. More precisely, instead of [Reference Nachtergaele, Sims and YoungNSY, equation (5.88)], we obtain
with some constant $\tilde C_{\theta }$, for each $0<\theta <1$. In the last line we used formula (C.14) and [Reference Nachtergaele, Sims and YoungNSY, Lemma 8.9]. Hence we get $\Psi _k^{{(n)}}, \Psi _k\in \hat {\mathcal B}_{\tilde F_{\theta }}([0,1])$.
Proof of Theorem 5.1.
Suppose $\Phi _{0}\sim \Phi _{1}$ via a path $\Phi $. Our definition of $\Phi _0\sim \Phi _1$ means the existence of a path of interactions satisfying [Reference Moon and OgataMO, Assumption 1.2]. Therefore, [Reference Moon and OgataMO, Theorem 1.3] guarantees the existence of a path of quasilocal automorphisms $\alpha _t$ satisfying $\omega _{\Phi _1}=\omega _{\Phi _0}\circ \alpha _1$. From the proof in [Reference Moon and OgataMO], the automorphism $\alpha _t$ is given by a family of interactions
with
as $\alpha _{t}=\tau _{t,0}^{\Psi }$. (Note that by the partial integral of [Reference Moon and OgataMO, equation (1.19)], we obtain [Reference Nachtergaele, Sims and YoungNSY, equation (6.103)] with function $W_\gamma $ in [Reference Nachtergaele, Sims and YoungNSY, equation (6.35)]).) The interaction $\Psi $ actually belongs to $\hat {\mathcal B}_{F_3}([0,1])$ for some $F_3\in {\mathcal F}_a$. To see this, note that the path $\Phi $ in Definition 1.2 satisfies [Reference Nachtergaele, Sims and YoungNSY, Assumption 6.12] for any F-function, because
with $C_b^\Phi $ and R given in Definition 1.2 3 and 4. In particular, it satisfies [Reference Nachtergaele, Sims and YoungNSY, Assumption 6.12] with respect to the F-function (see [Reference Nachtergaele, Sims and YoungNSY, Section 8]) $ F_1(r):=\frac {e^{-r}}{(1+r)^{4}} $. By [Reference Nachtergaele, Sims and YoungNSY, Section 8], $F_1$ belongs to ${\mathcal F}_a$. Fix any $0<\alpha <1$. Then by [Reference Nachtergaele, Sims and YoungNSY, Proposition 6.13] and its proof, the family of maps given by formula (D.25) [Reference Nachtergaele, Sims and YoungNSY, equation (6.102)] satisfies Assumption D.4, with $p=0$, $q=1$, $r=1$ and $G=G_{F_{2}}$, where $F_{2}(r)=(1+r)^{-4} \exp \left ( - r^{\alpha }\right )$. Furthermore, we have $\dot {\Phi }_m\in \hat {\mathcal B}_{F_2}([0,1])$ for any $m\in {\mathbb N}$, because
We have $F_{2}\in {\mathcal F}_{a}$, and fixing any $0<\alpha '<\alpha $, $\tilde F_{2}(r):= (1+r)^{-4} \exp \left ( - r^{\alpha '}\right )$ satisfies
for a suitable constant $C_{2,\theta ,\alpha '}$.
Therefore, by Theorem D.5, $\Psi $ given by formula (D.24) for this ${\mathcal K}_t$ and $\dot \Phi $ satisfy $\Psi _1,\Psi \in \hat {\mathcal B}_{\tilde F_2}([0,1])$ for $\tilde F_2\in {\mathcal F}_a$.
If $\Phi $ is $\beta _{g}$-invariant, then $\tau ^{\Phi (t)}$ commutes with $\beta _{g}$, hence ${\mathcal K}_{t}$ commutes with $\beta _{g}$. As $\Pi _{X}$ commutes with $\beta _{g}$ and $\dot \Phi $ is $\beta _{g}$-invariant, we see that $\Psi $ is $\beta _{g}$-invariant.
Proposition D.6. Let $F,\tilde F\in {\mathcal F}_a$ be F-functions of the form $F(r)=(1+r)^{-4} \exp \left ( - r^{\theta }\right ), \tilde F(r):=(1+r)^{-4} \exp \left ( - r^{\theta '}\right )$ with some constants $0<\theta '<\theta <1$. Let $\Psi ,\tilde \Psi \in {\mathcal B}_{F}([0,1])$ be a path of interactions such that $\Psi _{1}\in {\mathcal B}_{F}([0,1])$. Finally, let $\tau _{t,s}^{\tilde \Psi }$ and $\tau _{t,s}^{\left (\Lambda _n\right ),{\tilde \Psi }}$ be automorphisms given by $\Psi ,\tilde \Psi $ from Theorem D.3.
Then, with $s \in [0,1]$, the right-hand side of the sum
defines a path of interaction such that $\Xi ^{(s)}\in {\mathcal B}_{\tilde F}([0,1])$. Furthermore, the formula
defines $\Xi ^{{(n)(s)}}\in {\mathcal B}_{\tilde F}([0,1])$ such that $\Xi ^{(n)}\left ( Z, t \right )=0$ unless $Z\subset \Lambda _{n}$, and satisfies
For any $t,u\in [0,1]$, we have
Furthermore, if $\Psi _1\in \hat {\mathcal B}_{F}([0,1])$, then we have $\Xi ^{{(n)(s)}}, \Xi ^{{(s)}}\in \hat {\mathcal B}_{\tilde F}([0,1])$.
Acknowledgments
The author is grateful to Hal Tasaki for a stimulating discussion of the $2$-dimensional Dijkgraaf–Witten model, and to Yasuyuki Kawahigashi for introducing the author to various papers from operator algebra.
Conflict of Interest
None.
Financial support
This work was supported by JSPS KAKENHI grants 16K05171 and 19K03534. It was also supported by JST CREST grant JPMJCR19T2.Footnote 1