Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T17:23:05.331Z Has data issue: false hasContentIssue false

Necessary and sufficient conditions for ground state solutions to planar Kirchhoff-type equations

Published online by Cambridge University Press:  11 March 2024

Chunyu Lei
Affiliation:
School of Mathematical Sciences, Guizhou Minzu University, Guiyang 550025, P.R. China ([email protected])
Binlin Zhang
Affiliation:
College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, P.R. China ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

In this paper, we are concerned with the ground states of the following planar Kirchhoff-type problem:

\[ -\left(1+b\displaystyle\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)\Delta u+\omega u=|u|^{p-2}u, \quad x\in\mathbb{R}^2. \]
where $b,\, \omega >0$ are constants, $p>2$. Based on variational methods, regularity theory and Schwarz symmetrization, the equivalence of ground state solutions for the above problem with the minimizers for some minimization problems is obtained. In particular, a new scale technique, together with Lagrange multipliers, is delicately employed to overcome some intrinsic difficulties.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

1. Introduction and main results

The stability of bound states of nonlinear Schrödinger equations in the attractive case has been studied since 1983. In particular, the ground state was described by minimizing the corresponding energy functionals in several manifolds with constrained conditions. In this paper, we study the bound states for the following Kirchhoff type equation

(1.1)\begin{equation} \begin{cases} -\left(1+b\displaystyle\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)\Delta u+\omega u=|u|^{p-2}u, \ x\in\mathbb{R}^2, \\ u\in H^1(\mathbb{R}^2), \end{cases} \end{equation}

where $b,\, \omega >0$ are constants, $p\in (2,\,+\infty )$. It is known that every solution to Eq. (1.1) is a critical point of the energy functional $S: H^1(\mathbb {R}^2)\rightarrow \mathbb {R}$, given by

\[ S(u)=\frac{1}{2}\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+\frac{b}{4}\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2+\frac{\omega}{2}\int_{\mathbb{R}^2}|u|^2\,{\rm d}x-\frac{1}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x. \]

Equation (1.1) is related to the stationary form of the classical Kirchhoff equation

(1.2)\begin{equation} \begin{cases} u_{tt}-\left(1+b\displaystyle\int_{\Omega}|\nabla u|^2\,{\rm d}x\right)\Delta u=h(x,u), & \mathrm{in}\ \Omega, \\ u=0, & \mathrm{on}\ \partial\Omega, \end{cases} \end{equation}

where $\Omega \subset \mathbb {R}^N$ ($N\geq 1$) and $h\in C(\Omega \times \mathbb {R},\,\mathbb {R})$. Problem (1.2) was proposed by Kirchhoff [Reference Kirchhoff17] as an extensional the classical D'Alember's wave equation for free vibrations of elastic strings which corresponds to the case $b=0$ in (1.2). As we know, Kirchhoff's model takes into account modifications in length of the string produced by transversal vibrations. After the pioneering work of Lions [Reference Lions22], where an abstract framework was introduced, the stationary elliptic version of problem (1.2) has been widely studied in the literature, for example, we refer to the papers [Reference Autuori, Fiscella and Pucci1, Reference Chen, Kuo and Wu5, Reference Deng, Peng and Shuai7, Reference Huang, Liu and Wu13Reference Jünior and Siciliano15, Reference Li, Li and Shi21, Reference Liu, Hou and Liao23Reference Perera and Zhang25, Reference Wang, Xie and Zhang28].

The existence and qualitative properties of positive solutions for the following Kirchhoff-type equation

(1.3)\begin{equation} \begin{cases} -\left(a+b\displaystyle\int_{\mathbb{R}^N}|\nabla u|^2\,{\rm d}x\right)\Delta u+u=f(x,u), \ x\in\mathbb{R}^N, \\ u\in H^1(\mathbb{R}^N) \end{cases} \end{equation}

have been extensively in the past several decades where $f\in C(\mathbb {R}^N\times \mathbb {R},\,\mathbb {R})$, $a,\,b>0$ are constants. It is well known that Eq. (1.3) is the Euler–Lagrange equation of the energy functional $I: H^1(\mathbb {R}^N)\rightarrow \mathbb {R}$ defined as

\[ I(u)=\frac{1}{2}\int_{\mathbb{R}^N}(a|\nabla u|^2+u^2)\,{\rm d}x+\frac{b}{4}\left(\int_{\mathbb{R}^N}|\nabla u|^2\,{\rm d}x\right)^2-\int_{\mathbb{R}^N}F(x,u)\,{\rm d}x, \]

where $F(x,\,u)=\int _0^uf(x,\,s)\,{\rm d}s$. Define

(1.4)\begin{equation} m=\inf\left\{I(v): v\in H^1(\mathbb{R}^N)\ \mathrm{is\;a\;nontrivial\;solution\;to\;equation\;(1.3)}\right\}. \end{equation}

A nontrivial solution $u$ to problem (1.3) is called a ground state if $I(u)=m$.

For $N=2$ or 3, by using the fountain theorem, Jin and Wu [Reference Jin and Wu16] proved that problem (1.3) has infinitely many radial solutions when $f$ satisfies some suitable assumptions. Later, on $\mathbb {R}^3$, He and Zou [Reference He and Zou11] studied (1.3) under the conditions that $f(x,\,u):=f(u)$ satisfies $\lim _{|u|\rightarrow 0}f(u)/|u|^3=0$, $\lim _{|u|\rightarrow \infty }f(u)/|u|^q=0$ for some $3< q<5$, $f(t)/t^3$ is strictly increasing for $t>0$ and

\[ 0<\theta\int_0^uf(s)\,{\rm d}s\leq f(u)u, \ \mathrm{for} \ \theta>4. \]

The authors obtained existence and concentration behavior of positive solutions and ground state solutions to (1.3) via using the mountain pass theorem and the Nehari manifold, respectively. When $f(x,\,u):=\lambda f(u)+|u|^4u$, where $f(u)$ satisfies some appropriate assumptions, Wang et al. [Reference Wang, Tian, Xu and Zhang27], He et al. [Reference He, Li and Peng12], Li and Ye [Reference Li and Ye20] used the same arguments as in [Reference He and Zou11] to prove the existence of ground state solutions and concentration behavior of positive solutions. There are also some studies on ground state solutions and concentration behavior of positive solutions results, we refer to [Reference Figueiredo, Ikoma and Júnior8, Reference Figueiredo and Jünior9, Reference Ikoma14].

Recently, Li et al. [Reference Li, Luo, Peng, Wang and Xiang19] considered the existence of positive ground state solutions of (1.3) when $f(x,\,u):=u^p$ with $1< p<5$ on $\mathbb {R}^3$. Furthermore, they exploited the smoothness, symmetry and asymptotic behavior of positive solutions. Qi and Zou [Reference Qi and Zou26] studied the exact number and expressions of the positive solutions for problem (1.1) with the prescribed $L^2$-norm and the unknown frequency. Wei et al. [Reference Wei, Tang and Zhang29] established the existence of ground state solution for problem (1.1) with critical exponential and periodic nonlinearity, see also [Reference Chen and Yu6] for some existence results for a Kirchhoff-type problem in $\mathbb {R}^2$ with critical exponential.

Inspired by the above work, we are interested in necessary and sufficient conditions for ground state solutions for Kirchhoff-type problems in the whole space $\mathbb {R}^2$, which have not been investigated in the literature until now. However, the main difficulty faced is that we have to consider the nonlocal term $b\int _{\mathbb {R}^2}|\nabla u|^2\,{\rm d}x$ in the whole space. For this, we introduce a new scale technique to deal with this problem.

Before stating our main results, we introduce the following functionals and sets, respectively.

(1.5)\begin{align} T(u)& =\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+b\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2,\nonumber\\ V(u)& =\frac{1}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x-\frac{\omega}{2}\int_{\mathbb{R}^2}|u|^2\,{\rm d}x,\nonumber\\ Q(u)& =\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+b\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2-\frac{p-2}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x,\nonumber\\ A& =\left\{u\!\in\! H^1(\mathbb{R}^2): u\neq0 \quad\mathrm{and}\quad \left(1\!+\!b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)\Delta u-\omega u+|u|^{p-2}u\!=\!0\right\},\nonumber\\ G& =\left\{u\in A: S(u)\leq S(v) \ \mathrm{for~all}\ v\in A\right\},\nonumber\\ N& =\{u\in H^1(\mathbb{R}^2): V(u)=0 \ \mathrm{and} \ u\neq0\}, \end{align}
(1.6)\begin{align} M& =\{u\in H^1(\mathbb{R}^2): Q(u)=0\ \mathrm{and} \ u\neq0\}. \end{align}

Now our main results are listed as follows.

Theorem 1.1 Assume $b,\,\omega >0$ and $p>2$. Then

  1. (i) $A$ and $G$ are nonempty.

  2. (ii) $u\in G$ if and only if $u$ solves the minimization problem

    (1.7)\begin{equation} \begin{cases} u\in N \ \text{and} \ \int_{\mathbb{R}^2}|u|^2\,{\rm d}x=\frac{2(4bd_N+1)-2\sqrt{4bd_N+1}}{\omega b(p-2)},\\ S(u)=d_N:=\min\{S(w): w\in N\}. \end{cases} \end{equation}
  3. (iii) There exists a real-valued, positive, spherically symmetric, and decreasing function $\varphi \in G$ such that

    \[ G=\bigcup\{\varphi({\cdot}{-}y): y\in\mathbb{R}^2\}. \]

Theorem 1.2 Assume $b,\,\omega >0$ and $p>6$. If $u\in H^1(\mathbb {R}^2)$, then $u\in G$ if and only if $u$ solves the minimization problem

(1.8)\begin{equation} \begin{cases} u\in M,\\ S(u)=\min\{S(w): w\in M\}. \end{cases} \end{equation}

Remark 1.3 Note that our results are new even in the available literature concerning the case of $\mathbb {R}^N$ ($N\geq 3$). As a matter of fact, our scale technique seems difficult to be employed in $\mathbb {R}^N$ ($N\geq 3$). Of course, it would be interesting to extend our results to $\mathbb {R}^N$ ($N\geq 3$). In addition, our results could not be deduced if the nonlinearity $|u|^{p-2}u$ is replaced by the one with subcritical or critical exponential growth.

The paper is organized as follows. In § 2, we establish a regularity result and give the proof of theorem 1.1. In § 3, we deal with the proof of theorem 1.2.

2. Proof of theorem 1.1

If $u$ is a solution of problem (1.1), then

\[ \left(1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x=\int_{\mathbb{R}^2}\left(|u|^{p}-\omega|u|^2\right)\,{\rm d}x. \]

Now, $u$ is also the critical point of $S(u)$ in $H^1(\mathbb {R}^2)$. So we have the Pohozaev's identity $\frac {d}{d\lambda }|_{\lambda =1}S(u(\lambda ^{-1}x))=0$. This implies $V(u)=0$, that is,

\[ \int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x=\frac{\omega p}{2}\int_{\mathbb{R}^2}|u|^2\,{\rm d}x, \]

and hence

(2.1)\begin{equation} T(u)=\frac{\omega(p-2)}{2}\int_{\mathbb{R}^2}|u|^2\,{\rm d}x. \end{equation}

Consequently

\[ \int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x=\frac{\sqrt{1+2b(p-2)\omega\int_{\mathbb{R}^2}|u|^2\,{\rm d}x}-1}{2b}, \]

which leads to

(2.2)\begin{equation} \left. \begin{array}{rcl} S(u) & = & \displaystyle\dfrac{1}{2}\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+\dfrac{b}{4}\left(\int_{\mathbb{R}^2}|\nabla u|^2dx\right)^2-V(u)\\ & = & \displaystyle\dfrac{1}{2}\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+\dfrac{b}{4}\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2\\ & = & \displaystyle\dfrac{(p-2)\omega\int_{\mathbb{R}^2}|u|^2\,{\rm d}x}{8}+\dfrac{\sqrt{1+2b(p-2)\omega\int_{\mathbb{R}^2}|u|^2\,{\rm d}x}-1}{8b}. \end{array} \right. \end{equation}

Lemma 2.1 Assume $2< p<\infty$, $\omega >0$. If $u$ is a solution of (1.1). Then the following properties hold:

  1. (i) $u\in W^{3,q}(\mathbb {R}^2)$ for every $2\leq q<+\infty$. In particular, $u\in C^2(\mathbb {R}^2)$ and $|D^\beta u(x)|\rightarrow 0$ as $|x|\rightarrow \infty$ for all $|\beta |\leq 2$.

  2. (ii) There exists $\varepsilon >0$ such that $e^{\varepsilon |x|}(|u(x)|+|\nabla u(x)|)\in L^\infty (\mathbb {R}^2)$.

Proof. $(i)$ We borrow the idea from [Reference Cazenave4]. Let $u$ be a solution of problem (1.1). Thus,

\[ -\Delta u+\frac{\omega}{\left(1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)}u=\frac{1}{\left(1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)}|u|^{p-2}u. \]

Let $A=1+b\int _{\mathbb {R}^2}|\nabla u|^2\,{\rm d}x$ ($A<\infty$), $B=\frac {1+b\int _{\mathbb {R}^2}|\nabla u|^2\,{\rm d}x}{\omega ^2}$. Changing $u(x)$ to

\[ u(x)=\left(A/\omega\right)^{\frac{1}{p-2}}v(\sqrt{\omega/A}x), \]

we may assume that $v$ satisfies

(2.3)\begin{equation} {-}\Delta v+v=\frac{1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x}{\omega^2}|v|^{p-2}v=B|v|^{p-2}v. \end{equation}

Note that (2.3) can be written in the form

(2.4)\begin{equation} \mathcal{F}^{{-}1}((1+4\pi^2|\xi|^2)\mathcal{F}v)=B|v|^{p-2}v, \end{equation}

where $\mathcal {F}$ is the Fourier transform. For $K>0$, set

\[ \begin{array}{@{}ll} \displaystyle v_K & =\left\{\begin{array}{@{}ll} \displaystyle \pm K,\ \pm v>K,\\ \displaystyle v,\ |v|\leq K. \end{array}\right. \end{array} \]

Observing that, for $\beta \geq 1$,

\[ \int_{\mathbb{R}^2}|\nabla(|v_K|^{\beta-1}v)|^2\,{\rm d}x=\int_{\mathbb{R}^2}|v_K|^{2\beta-2}|\nabla v|^2\,{\rm d}x+(\beta^2-1)\int_{\mathbb{R}^2}|v_K|^{2\beta-2}|\nabla v_K|^2\,{\rm d}x, \]

we get

(2.5)\begin{align} & \displaystyle\frac{1}{\beta+1}\int_{\mathbb{R}^2}[|\nabla(|v_K|^{\beta-1}v)|^2+(|v_K|^{\beta-1}v)^2]\,{\rm d}x\nonumber\\ & =\displaystyle\frac{1}{\beta+1}\int_{\mathbb{R}^2}|v_K|^{2\beta-2}|\nabla v|^2\,{\rm d}x+(\beta-1)\int_{\mathbb{R}^2}|v_K|^{2\beta-2}|\nabla v_K|^2\,{\rm d}x\nonumber\\ & \quad +\frac{1}{\beta+1}\int_{\mathbb{R}^2}(|v_K|^{\beta-1}v)^2\,{\rm d}x\nonumber\\ & \leq \displaystyle\int_{\mathbb{R}^2}|v_K|^{2\beta-2}|\nabla v|^2\,{\rm d}x+\int_{\mathbb{R}^2}(|v_K|^{\beta-1}v)^2\,{\rm d}x\nonumber\\ & \quad +2(\beta-1)\int_{\mathbb{R}^2}|v_K|^{2\beta-2}|\nabla v_K|^2\,{\rm d}x. \end{align}

Taking the test function $\varphi =|v_K|^{2\beta -2}v$ in (2.3), we have

(2.6)\begin{align} & \int_{\mathbb{R}^2}|v_K|^{2\beta-2}|\nabla v|^2\,{\rm d}x+2(\beta-1)\int_{\mathbb{R}^2}|v_K|^{2\beta-2}|\nabla v_K|^2\,{\rm d}x+\int_{\mathbb{R}^2}(|v_K|^{\beta-1}v)^2\,{\rm d}x\nonumber\\ & \quad = B\int_{\mathbb{R}^2}|v_K|^{2\beta-2}|v|^2|v|^{p-2}\,{\rm d}x. \end{align}

It follows from (2.5) and (2.6) that

(2.7)\begin{equation} \frac{1}{\beta+1}\int_{\mathbb{R}^2}[|\nabla(|v_K|^{\beta-1}v)|^2+(|v_K|^{\beta-1}v)^2]\,{\rm d}x\leq B\int_{\mathbb{R}^2}|v_K|^{2\beta-2}v^2|v|^{p-2}\,{\rm d}x. \end{equation}

On one hand, by the Sobolev inequality, we have

\[ \int_{\mathbb{R}^2}[|\nabla(v_K|^{\beta-1}v)|^2+(|v_K|^{\beta-1}v)^2]\,{\rm d}x\geq S_{2p}\left[\int_{\mathbb{R}^2}(|v_K|^{\beta-1}v)^{2p}\,{\rm d}x\right]^{\frac{1}{p}}, \]

where

\[ S_{2p}=\inf_{u\in H^1(\mathbb{R}^2)\backslash\{0\}}\frac{\int_{\mathbb{R}^2}(|\nabla u|^2+u^2)\,{\rm d}x}{(\int_{\mathbb{R}^2}|u|^{2p}\,{\rm d}x)^{\frac{1}{p}}}. \]

On the other hand, by the Hölder inequality, we deduce that

\begin{align*} \int_{\mathbb{R}^2}|v_K|^{2\beta-2}v^2|v|^{p-2}\,{\rm d}x& =\displaystyle\left[\int_{\mathbb{R}^2}(|v_K|^{2\beta-2}v^2)^{\frac{2p}{p+2}}\,{\rm d}x\right]^{\frac{p+2}{2p}} \left[\int_{\mathbb{R}^2}|v|^{2p}\,{\rm d}x\right]^{\frac{p-2}{2p}}\\ & \leq S_{2p}^{-\frac{p-2}{2}}\|v\|^{p-2}\left[\int_{\mathbb{R}^2}(|v_K|^{2\beta-2}v^2)^{\frac{2p}{p+2}}\,{\rm d}x\right]^{\frac{p+2}{2p}}. \end{align*}

The symbol $\|\cdot \|$ is used only for the norm in $H^1(\mathbb {R}^2)$. Applying (2.7) and letting $K\rightarrow \infty$, we obtain

\[ \frac{S_{2p}}{\beta+1}|v|_{L^{2\beta p}}^{2\beta}\leq S_{2p}^{-\frac{p-2}{2}}\|v\|^{p-2}|v|_{L^{\frac{4\beta p}{p+2}}}^{2\beta}, \]

where $|\cdot |_{L^q}$ denotes the standard norm in $L^q(\mathbb {R}^2)$. It follows from the above inequality that

(2.8)\begin{equation} |v|_{L^{2\beta p}}\leq C(\beta+1)^{\frac{1}{2\beta}}\|v\|^\frac{p-2}{2\beta}|v|_{L^{\frac{4\beta p}{p+2}}}. \end{equation}

Set

\[ 2p\beta_{n-1}=\frac{4p}{p+2}\beta_n, \]

so that

\[ \beta_n=\left(\frac{p+2}{2}\right)^{n-1}, \quad n\in\mathbb{N}. \]

Consequently, $\beta _n\rightarrow \infty$ as $n\rightarrow \infty$. Therefore,

\[ \lim_{n\rightarrow\infty}(\beta_n+1)^{\frac{1}{2\beta_n}} =\displaystyle\lim_{n\rightarrow\infty}e^{\frac{\log(1+\beta_n)}{2\beta_n}} =1. \]

Doing iteration by (2.8), we obtain $v\in L^\infty (\mathbb {R}^2)$. Thus $|v|^{p-2}v\in L^2(\mathbb {R}^2)\cap L^\infty (\mathbb {R}^2)$, so that $v\in W^{2,q}(\mathbb {R}^2)$ and $|v|^{p-2}v\in W^{1,q}(\mathbb {R}^2)$ for all $2\leq q<\infty$. Therefore, it follows from (2.4) that $(-\Delta +I)\partial _jv\in L^q(\mathbb {R}^2)$, i.e., $\mathcal {F}^{-1}((1+4\pi ^2|\xi |^2)\mathcal {F}\partial _jv)\in L^q(\mathbb {R}^2)$. Thus $\partial _jv\in H^{2,q}(\mathbb {R}^2)=W^{2,q}(\mathbb {R}^2)$, and so $v\in W^{3,q}(\mathbb {R}^2)$. By the Sobolev's embedding theorem, $v\in C^{2,\delta }(\mathbb {R}^2)$ for $0<\delta <1$. Therefore, $|D^\beta v(x)|\rightarrow 0$ as $|x|\rightarrow \infty$ for all $|\beta |\leq 2$, so that $|D^\beta u(x)|\rightarrow 0$ as $|x|\rightarrow \infty$.

$(ii)$ Let $\varepsilon >0$ and $\theta _\varepsilon (x)=e^{\frac {|x|}{1+\varepsilon |x|}}$. $\theta _\varepsilon$ is bounded, Lipschitz continuous, and $|\nabla \theta _\varepsilon |\leq \theta _\varepsilon$ a.e. Taking the test function $\theta _\varepsilon v\in H^1(\mathbb {R}^2)$ in (2.3), we get

(2.9)\begin{equation} \int_{\mathbb{R}^2}\nabla v\nabla(\theta_\varepsilon v)\,{\rm d}x+\int_{\mathbb{R}^2}\theta_\varepsilon|v|^2\,{\rm d}x=\frac{1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x}{\omega^2}\int_{\mathbb{R}^2}\theta_\varepsilon|v|^p\,{\rm d}x. \end{equation}

Noting that

\begin{align*} \int_{\mathbb{R}^2}\nabla v\nabla(\theta_\varepsilon v)\,{\rm d}x& =\displaystyle\int_{\mathbb{R}^2}\theta_\varepsilon|\nabla v|^2\,{\rm d}x+\int_{\mathbb{R}^2}v\nabla\theta_\varepsilon\nabla v\,{\rm d}x\\ & \geq\displaystyle\int_{\mathbb{R}^2}\theta_\varepsilon|\nabla v|^2\,{\rm d}x-\int_{\mathbb{R}^2}|v||\nabla\theta_\varepsilon||\nabla v|\,{\rm d}x\\ & \geq\displaystyle\int_{\mathbb{R}^2}\theta_\varepsilon|\nabla v|^2\,{\rm d}x-\int_{\mathbb{R}^2}\theta_\varepsilon|v||\nabla v|\,{\rm d}x\\ & \geq\displaystyle\frac{1}{2}\int_{\mathbb{R}^2}\theta_\varepsilon|\nabla v|^2\,{\rm d}x-\frac{1}{2}\int_{\mathbb{R}^2}\theta_\varepsilon|v|^2\,{\rm d}x, \end{align*}

we obtain

(2.10)\begin{align} \frac{1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x}{\omega^2}\int_{\mathbb{R}^2}\theta_\varepsilon|v|^p\,{\rm d}x& =\displaystyle\int_{\mathbb{R}^2}\nabla v\nabla(\theta_\varepsilon v)\,{\rm d}x+\int_{\mathbb{R}^2}\theta_\varepsilon|v|^2\,{\rm d}x\nonumber\\ & \geq\displaystyle\frac{1}{2}\int_{\mathbb{R}^2}\theta_\varepsilon|v|^2\,{\rm d}x. \end{align}

Since $u\in H^1(\mathbb {R}^2)$, there exists $R>0$ such that $|v(x)|^{p-2}\leq \frac {1+b\int _{\mathbb {R}^2}|\nabla u|^2\,{\rm d}x}{4\omega ^2}$ for $|x|\geq R$. Thus

\begin{align*} & \displaystyle\frac{1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x}{\omega^2}\int_{\mathbb{R}^2}\theta_\varepsilon|v|^p\,{\rm d}x\\ & \quad =\displaystyle\frac{1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x}{\omega^2}\int_{\{|x|\leq R\}}\theta_\varepsilon|v|^p\,{\rm d}x+\frac{1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x}{\omega^2}\int_{\{|x|\geq R\}}\theta_\varepsilon|v|^p\,{\rm d}x\\ & \quad \leq \displaystyle\frac{1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x}{\omega^2}\int_{\{|x|\leq R\}}e^{|x|}|v|^p\,{\rm d}x+\frac{1}{4}\int_{\{|x|\geq R\}}\theta_\varepsilon|v|^{2}\,{\rm d}x\\ & \quad \leq \displaystyle\frac{1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x}{\omega^2}e^{R}\int_{\{|x|\leq R\}}|v|^p\,{\rm d}x+\frac{1}{4}\int_{\mathbb{R}^2}\theta_\varepsilon|v|^{2}\,{\rm d}x. \end{align*}

It follows from (2.10) that

\[ \int_{\mathbb{R}^2}\theta_\varepsilon|v|^2\,{\rm d}x\leq4\frac{1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x}{\omega^2}e^{R}\int_{\{|x|\leq R\}}|v|^p\,{\rm d}x. \]

Letting $\varepsilon \downarrow 0$, we deduce that

(2.11)\begin{equation} \int_{\mathbb{R}^2}e^{|x|}|v|^2\,{\rm d}x<{+}\infty. \end{equation}

Since $v$ is globally Lipschitz continuous by $(i)$, $|v(x)|^{4}e^{|x|}$ is bounded. Similarly, applying $\partial _j$ to equation (2.3) and multiplying the resulting equation by $\theta _\varepsilon \partial _j u$ for $j=1,\,2$, we have

\[ \int_{\mathbb{R}^2}\nabla(\partial_j v)\nabla(\theta_\varepsilon (\partial_j v))\,{\rm d}x+\int_{\mathbb{R}^2}\theta_\varepsilon|\partial_j v|^2\,{\rm d}x=\frac{1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x}{\omega^2}\int_{\mathbb{R}^2}\theta_\varepsilon|\partial_j v|^p\,{\rm d}x. \]

Applying the fact

\begin{align*} \int_{\mathbb{R}^2}\nabla (\partial_j v)\nabla(\theta_\varepsilon (\partial_j v))\,{\rm d}x& = \displaystyle\int_{\mathbb{R}^2}\theta_\varepsilon|\nabla \partial_j v|^2\,{\rm d}x+\int_{\mathbb{R}^2}(\partial_j v)\nabla\theta_\varepsilon\nabla (\partial_j v)\,{\rm d}x\\ & \geq \displaystyle\int_{\mathbb{R}^2}\theta_\varepsilon|\nabla (\partial_j v)|^2\,{\rm d}x-\int_{\mathbb{R}^2}|\partial_j v||\nabla\theta_\varepsilon||\nabla (\partial_j v)|\,{\rm d}x\\ & \geq \displaystyle\int_{\mathbb{R}^2}\theta_\varepsilon|\nabla (\partial_j v)|^2\,{\rm d}x-\int_{\mathbb{R}^2}\theta_\varepsilon|\partial_j v||\nabla (\partial_j v)|\,{\rm d}x\\ & \geq \displaystyle\frac{1}{2}\int_{\mathbb{R}^2}\theta_\varepsilon|\nabla (\partial_j v)|^2\,{\rm d}x-\frac{1}{2}\int_{\mathbb{R}^2}\theta_\varepsilon|\partial_j v|^2\,{\rm d}x, \end{align*}

we have

\begin{align*} \displaystyle\frac{1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x}{\omega^2}\int_{\mathbb{R}^2}\theta_\varepsilon|\partial_j v|^p\,{\rm d}x& =\displaystyle\int_{\mathbb{R}^2}\nabla (\partial_j v)\nabla(\theta_\varepsilon (\partial_j v))\,{\rm d}x+\int_{\mathbb{R}^2}\theta_\varepsilon|\partial_j v|^2\,{\rm d}x\\ & \geq \displaystyle\frac{1}{2}\int_{\mathbb{R}^2}\theta_\varepsilon|\nabla (\partial_j v)|^2\,{\rm d}x+\frac{1}{2}\int_{\mathbb{R}^2}\theta_\varepsilon|\partial_j v|^2\,{\rm d}x. \end{align*}

Consequently

(2.12)\begin{equation} \frac{1}{2}\int_{\mathbb{R}^2}\theta_\varepsilon|\partial_j v|^2\,{\rm d}x\leq\frac{1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x}{\omega^2}\int_{\mathbb{R}^2}\theta_\varepsilon|\partial_jv|^p\,{\rm d}x. \end{equation}

By $(i)$, there exists $R>0$ such that $|\partial _jv(x)|^{p-2}\leq \frac {1+b\int _{\mathbb {R}^2}|\nabla u|^2\,{\rm d}x}{4\omega ^2}$ for $|x|\geq R$. Thus

\begin{align*} & \displaystyle\frac{1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x}{\omega^2}\int_{\mathbb{R}^2}\theta_\varepsilon|\partial_jv|^p\,{\rm d}x\\ & \quad =\displaystyle\frac{1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x}{\omega^2}\int_{\{|x|\leq R\}}\theta_\varepsilon|\partial_jv|^p\,{\rm d}x\\ & \quad +\frac{1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x}{\omega^2}\int_{\{|x|\geq R\}}\theta_\varepsilon|\partial_jv|^p\,{\rm d}x\\ & \quad \leq \displaystyle\frac{1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x}{\omega^2}\int_{\{|x|\leq R\}}e^{|x|}|\partial_jv|^p\,{\rm d}x+\frac{1}{4}\int_{\{|x|\geq R\}}\theta_\varepsilon|\partial_jv|^{2}\,{\rm d}x\\ & \quad \leq \displaystyle\frac{1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x}{\omega^2}e^{R}\int_{\{|x|\leq R\}}|\partial_jv|^p\,{\rm d}x+\frac{1}{4}\int_{\mathbb{R}^2}\theta_\varepsilon|\partial_jv|^{2}\,{\rm d}x. \end{align*}

It follows from (2.12) that

\[ \int_{\mathbb{R}^2}\theta_\varepsilon|\partial_jv|^2\,{\rm d}x\leq4\frac{1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x}{\omega^2}e^{R}\int_{\{|x|\leq R\}}|\partial_jv|^p\,{\rm d}x. \]

Letting $\varepsilon \downarrow 0$, we deduce that

\[ \int_{\mathbb{R}^2}e^{|x|}|\nabla v|^2\,{\rm d}x<{+}\infty. \]

Since $\nabla v$ is globally Lipschitz continuous, similarly, we deduce that $|\nabla v(x)|^{4}e^{|x|}$ is bounded. The proof is now finished.

Lemma 2.2 Assume that $2< p<\infty$ and $b,\,\omega >0$. It follows that the minimization problem

(2.13)\begin{equation} d_N:=\min\{S(w): w\in N\}, \end{equation}

has a positive solution, where $N$ is defined in (1.5). Moreover, every solution of (2.13) is the solution of equation (1.1).

Proof. A similar argument to the proof of Theorem 8.1.5 in [Reference Cazenave4], we observe that $d_N>0$. Indeed, consider $u\in N$, it implies that $V(u)=0$, namely

\[ \int_{\mathbb{R}^2}|u|^2\,{\rm d}x=\frac{2}{\omega p}\int_{\mathbb{R}^2}|u|^p\,{\rm d}x. \]

It follows from the Gagliardo–Nirenberg inequality that there exists $C$ independent of $u$ such that

\[ \int_{\mathbb{R}^2}|u|^p\,{\rm d}x\leq C\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^{\frac{p-2}{2}}\int_{\mathbb{R}^2}|u|^2\,{\rm d}x. \]

From the above information, there exists $c>0$ such that $\int _{\mathbb {R}^2}|\nabla u|^2\,{\rm d}x\geq c$, and so

\begin{align*} S(u)& =\displaystyle\frac{1}{2}\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+\frac{b}{4}\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2-V(u)\\ & =\displaystyle\frac{1}{2}\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+\frac{b}{4}\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2\\ & > 0 \end{align*}

for all $u\in N$, which implies that $d_N>0$.

We recall the definition of the Schwarz symmetrization [Reference Berestycki and Lions3]. If $u\in L^2(\mathbb {R}^2)$ is a nonnegative function, we denote by $u^*$ the unique spherically symmetric, nonnegative, non-increasing function such that

\[ |\{x\in\mathbb{R}^2: u^*(x)>\lambda\}|=|\{x\in\mathbb{R}^2: |u(x)|>\lambda\}| \ \mathrm{for~all} \ \lambda>0. \]

In particular,

(2.14)\begin{equation} \begin{cases} \displaystyle\int_{\mathbb{R}^2}|u^*|^q\,{\rm d}x=\int_{\mathbb{R}^2}|u|^q\,{\rm d}x,\ \mathrm{for}\ 1\leq q<{+}\infty,\\ \displaystyle\int_{\mathbb{R}^2}|\nabla u^*|^2\,{\rm d}x\leq\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x. \end{cases} \end{equation}

The proof of lemma 2.2 is divided into three steps.

Step 1. we claim that the minimization problem (2.13) has a solution.

Similar to the proof of [Reference Berestycki, Gallouët and Kavian2], it is clear that $N\neq \emptyset$. Let $\{v_n\}\subset N$ be a minimizing sequence of $S$, that is, $V(v_n)=0$, and $S(v_n)\rightarrow d_N$. Let $w_n=|v_n|^*$. It follows from (2.14) that $V(w_n)=V(v_n)$, and hence $\{w_n\}$ is also a minimizing sequence of $S$. Define now $u_n$ by $u_n(x)=w_n(\lambda ^{1/2}_nx)$, where

\[ \lambda_n=\frac{\int_{\mathbb{R}^2}|w_n|^2\,{\rm d}x}{\gamma}, \]

where

\[ \gamma=\frac{2(4bd_N+1)-2\sqrt{4bd_N+1}}{\omega b(p-2)}. \]

We deduce that

\begin{align*} \displaystyle\int_{\mathbb{R}^2}|u_n|^2\,{\rm d}x& = \displaystyle\int_{\mathbb{R}^2}|w_n|^2\frac{1}{\lambda_n}\,{\rm d}x\\ & = \displaystyle\gamma,\\ V(u_n)& =\displaystyle\frac{1}{p}\int_{\mathbb{R}^2}|w_n|^{p}\frac{1}{\lambda_n}\,{\rm d}x-\frac{\omega}{2}\int_{\mathbb{R}^2}|w_n|^2\frac{1}{\lambda_n}\,{\rm d}x\\ & =\displaystyle\frac{1}{\lambda_n}\left(\frac{1}{p}\int_{\mathbb{R}^2}|w_n|^{p}\,{\rm d}x-\frac{\omega}{2}\int_{\mathbb{R}^2}|w_n|^2\,{\rm d}x\right)\\ & =\displaystyle\frac{1}{\lambda_n}\left(\frac{1}{p}\int_{\mathbb{R}^2}(|v_n|^*)^{p}\,{\rm d}x-\frac{\omega}{2}\int_{\mathbb{R}^2}(|v_n|^*)^2\,{\rm d}x\right)\\ & =\displaystyle\frac{1}{\lambda_n}\left(\frac{1}{p}\int_{\mathbb{R}^2}|v_n|^{p}\,{\rm d}x-\frac{\omega}{2}\int_{\mathbb{R}^2}|v_n|^2\,{\rm d}x\right)\\ & = 0, \end{align*}

and

\begin{align*} \displaystyle T(u_n)& =\displaystyle\int_{\mathbb{R}^2}|\nabla u_n|^2\,{\rm d}x+b\left(\int_{\mathbb{R}^2}|\nabla u_n|^2\,{\rm d}x\right)^2\\ & =\displaystyle\int_{\mathbb{R}^2}|\nabla w_n|^2\lambda_n\cdot\frac{1}{\lambda_n}\,{\rm d}x+b\left(\int_{\mathbb{R}^2}|\nabla w_n|^2\lambda_n\cdot\frac{1}{\lambda_n}\,{\rm d}x\right)^2\\ & =\displaystyle\int_{\mathbb{R}^2}|\nabla w_n|^2\,{\rm d}x+b\left(\int_{\mathbb{R}^2}|\nabla w_n|^2\,{\rm d}x\right)^2. \end{align*}

These results imply

(2.15)\begin{equation} S(u_n)=S(w_n)\rightarrow d_N, \ \mathrm{as}\ n\rightarrow\infty. \end{equation}

We obtain that $\{u_n\}$ is also a minimizing sequence of $S$. It follows from (2.15) that $\{u_n\}$ is bounded in $H^1(\mathbb {R}^2)$. Therefore, there exist a subsequence of $u_n$ (denoted by itself) and $u\in H^1(\mathbb {R}^2)$ such that $u_n\rightharpoonup u$ weakly in $H^1(\mathbb {R}^2)$ and $u_n\rightarrow u$ strongly in $L^{p}(\mathbb {R}^2)$. By the Fatou's lemma,

\begin{align*} 0& = \lim_{n\rightarrow\infty}V(u_n)=\displaystyle\lim_{n\rightarrow\infty}\left(\frac{1}{p}\int_{\mathbb{R}^2}|u_n|^{p}\,{\rm d}x-\frac{\omega}{2}\int_{\mathbb{R}^2}|u_n|^2\,{\rm d}x\right)\\ & \leq \frac{1}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x-\frac{\omega}{2}\int_{\mathbb{R}^2}|u|^2\,{\rm d}x\\ & = V(u). \end{align*}

By the weak lower semicontinuity of the $L^2$ norm,

\[ T(u)\leq\liminf_{n\rightarrow\infty}T(u_n). \]

Therefore,

\[ V(u)\geq0, \quad \mathrm{and} \quad S(u)\leq d_N. \]

We claim that $V(u)=0$. Indeed, if $V(u)>0$, then $u\neq 0$. So there exists $\lambda \in (0,\,1)$ such that $v=\lambda u$ satisfies $V(v)=0$. Thus $v\in N$. Furthermore,

\begin{align*} \frac{1}{2}\int_{\mathbb{R}^2}|\nabla v|^2\,{\rm d}x+\frac{b}{4}\left(\int_{\mathbb{R}^2}|\nabla v|^2\,{\rm d}x\right)^2& = \displaystyle\frac{\lambda^2}{2}\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+\frac{b}{4}\lambda^4\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2\\ & < \displaystyle\frac{1}{2}\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+\frac{b}{4}\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2. \end{align*}

Noting that $d_N=\lim _{n\to \infty }S(u_n)$ and $V(u_n)=0$, then we have

\begin{align*} d_N& = \displaystyle\lim_{n\to\infty}S(u_n)\\ & = \displaystyle\lim_{n\to\infty}\left\{\frac{1}{2}\int_{\mathbb{R}^2}|\nabla u_n|^2\,{\rm d}x+\frac{b}{4}\left(\int_{\mathbb{R}^2}|\nabla u_n|^2\,{\rm d}x\right)^2-V(u_n)\right\}\\ & = \displaystyle\lim_{n\to\infty}\left\{\frac{1}{2}\int_{\mathbb{R}^2}|\nabla u_n|^2\,{\rm d}x+\frac{b}{4}\left(\int_{\mathbb{R}^2}|\nabla u_n|^2\,{\rm d}x\right)^2\right\}\\ & \geq \displaystyle\frac{1}{2}\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+\frac{b}{4}\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2. \end{align*}

From the above information, we get

\begin{align*} S(v)& =\frac{1}{2}\int_{\mathbb{R}^2}|\nabla v|^2\,{\rm d}x+\frac{b}{4}\left(\int_{\mathbb{R}^2}|\nabla v|^2\,{\rm d}x\right)^2\\& <\frac{1}{2}\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+\frac{b}{4}\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2\leq d_N. \end{align*}

This implies that $S(v)< d_N$. This contradicts (2.13) since $S(v)\geq d_N$. Therefore, $V(u)=0$. This implies that

\[ \lim_{n\rightarrow\infty}V(u_n)=V(u). \]

Consequently,

\[ \int_{\mathbb{R}^2}|u|^2\,{\rm d}x=\lim_{n\rightarrow\infty}\int_{\mathbb{R}^2}|u_n|^2\,{\rm d}x=\gamma, \]

and so $u$ satisfies (2.13).

Step 2. We claim that every solutions of (2.13) belongs to $A$.

Indeed, consider a solution $u$ of (2.13). There exists a Lagrange multiplier $\lambda$ such that

(2.16)\begin{equation} -\left(1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)\Delta u=\lambda(|u|^{p-2}u-\omega u). \end{equation}

For any $\varphi \in H^1(\mathbb {R}^2)$, it follows from (2.16) that

\[ \left(1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)\int_{\mathbb{R}^2}\nabla u\nabla\varphi \,{\rm d}x=\lambda\int_{\mathbb{R}^2}(|u|^{p-2}u-\omega u)\varphi \,{\rm d}x. \]

Taking the test function $\varphi =u$, we obtain

(2.17)\begin{equation} T(u)=\left(1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x=\lambda\int_{\mathbb{R}^2}(|u|^{p}-\omega |u|^2)\,{\rm d}x. \end{equation}

Noting that

\begin{align*} S(u)& =\displaystyle\frac{1}{2}\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+\frac{b}{4}\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2\\ & = d_N, \end{align*}

we deduce that

\[ \int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x=\frac{-1+\sqrt{1+4bd_N}}{b}, \]

so that

\[ T(u)=\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+b\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2=\frac{1+4bd_N-\sqrt{1+4bd_N}}{b}. \]

It follows from $V(u)=0$ and $\int _{\mathbb {R}^2}|u|^2\,{\rm d}x=\gamma$ that

\[ \int_{\mathbb{R}^2}|u|^{p}=\frac{p\gamma\omega}{2}. \]

Together with (2.17), there holds

\[ \frac{1+4bd_N-\sqrt{1+4bd_N}}{b}=\lambda\frac{(p-2)\gamma\omega}{2}=\lambda\frac{(p-2)\omega}{2}\cdot\frac{2(4bd_N+1)-2\sqrt{4bd_N+1}}{\omega b(p-2)}, \]

and so $\lambda =1$. Therefore, $u$ satisfies problem (1.1). So $A\neq \emptyset$.

Step 3. We claim that $u$ satisfies problem (2.13) if and only if $u\in G$.

Consider any solution $u$ of (2.13) and any $v\in A$. That is,

\[ -\left(1+b\int_{\mathbb{R}^2}|\nabla v|^2\,{\rm d}x\right)\Delta v=|v|^{p-2}v-\omega v. \]

By Pohozaev's identity, we get $V(v)=0$. This means $v\in N$, and

\begin{align*} \int_{\mathbb{R}^2}|v|^{p}\,{\rm d}x& =\frac{p\omega}{2}\int_{\mathbb{R}^2}|v|^2\,{\rm d}x,\\ T(v)& =\int_{\mathbb{R}^2}|v|^{p}\,{\rm d}x-\omega\int_{\mathbb{R}^2}|v|^2\,{\rm d}x=\frac{(p-2)\omega}{2}\int_{\mathbb{R}^2}|v|^2\,{\rm d}x. \end{align*}

From (2.2), there holds

(2.18)\begin{equation} S(v)=\frac{(p-2)\omega\int_{\mathbb{R}^2}|v|^2\,{\rm d}x}{8}+\frac{\sqrt{1+2b(p-2)\omega\int_{\mathbb{R}^2}|v|^2\,{\rm d}x}-1}{8b}. \end{equation}

Since $v\in N$, by the definition of $d_N$, we have

\[ S(v)\geq S(u)=d_N, \]

which implies that $u\in G\neq \emptyset$.

Assume further that $v\in G$. Since $u\in G$ also, we have $S(u)=S(v)$. Noting that $S(u)=d_N$ and $\int _{\mathbb {R}^2}|u|^2\,{\rm d}x=\gamma =\frac {2(4bd_N+1)-2\sqrt {4bd_N+1}}{\omega b(p-2)}$, we obtain

\[ d_N=\frac{(p-2)\gamma\omega}{8}+\frac{\sqrt{1+2b(p-2)\gamma\omega}-1}{8b}. \]

Applying (2.18), we have

\begin{align*} & \frac{(p-2)\gamma\omega}{8}+\frac{\sqrt{1+2b(p-2)\gamma\omega}-1}{8b}\\ & \quad =\frac{(p-2)\omega\int_{\mathbb{R}^2}|v|^2\,{\rm d}x}{8}+\frac{\sqrt{1+2b(p-2)\omega\int_{\mathbb{R}^2}|v|^2\,{\rm d}x}-1}{8b}, \end{align*}

which implies that $\gamma =\int _{\mathbb {R}^2}|v|^2\,{\rm d}x,$ which means that $v$ satisfies (2.13). Hence, the proof is complete.

Proof. Proof of theorem 1.1

Consider $u\in G$, it follows that

\[ -\left(1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)\Delta u+\omega u=|u|^{p-2}u, \]

and so

(2.19)\begin{equation} -\Delta u+\frac{\omega}{\overline{b}} u=\frac{a(x)}{\overline{b}}u, \end{equation}

where

\[ a(x)=|u(x)|^{p-2}, \quad \overline{b}=\left(1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right). \]

According to lemma 2.1, $u\in C^2(\mathbb {R}^2)$ and $a(x)\rightarrow 0$ as $|x|\rightarrow \infty$. Applying Theorem 2 in [Reference Gidas, Ni and Nirenberg10], we obtain that there exists a positive, spherically symmetric solution $\varphi$ of Eq. (2.19) and $y\in \mathbb {R}^2$ such that $u(\cdot )=\varphi (\cdot -y)$. Note that $\varphi$, being radially symmetric, satisfies the ordinary differential equation

\[ \left(1+b\int_0^\infty4\pi r^2u_r^2dr\right)\left(u_{rr}+\frac{1}{r}u_r\right)+\omega u(r)-u^{p-1}(r)=0. \]

Since $\int _0^\infty 4\pi r^2u_r^2dr$ is independent of choice of $u$, we deduce that $1+b\int _0^\infty 4\pi r^2u_r^2dr$ is a positive constant. As a result, we obtain that $\varphi$ is unique by applying the uniqueness results in [Reference Kwong18] and [Reference Li, Luo, Peng, Wang and Xiang19]. The proof is now complete.

3. Proof of theorem 1.2

For the proof of theorem 1.2, we will use the following lemma.

Lemma 3.1 Given $u\in H^1(\mathbb {R}^2),\, u\neq 0$, and $\lambda >0$, set $\mathcal {P}(\lambda,\,u)(x)=\lambda u(\lambda x)$. Then following properties hold:

  1. (i) There exists a unique $\lambda ^*(u)>0$ such that $\mathcal {P}(\lambda ^*(u),\,u)\in M$.

  2. (ii) The function $\lambda \mapsto S(\mathcal {P}(\lambda,\,u))$ is convex on $(\lambda ^*(u),\,+\infty )$.

  3. (iii) $\lambda ^*(u)<1$ if and only if $Q(u)<0$.

  4. (iv) $\lambda ^*(u)=1$ if and only if $u\in M$.

  5. (v) $S(\mathcal {P}(\lambda,\,u))< S(\mathcal {P}(\lambda ^*(u),\,u))$ for each $\lambda >0$, $\lambda \neq \lambda ^*(u)$.

  6. (vi) $\frac {d}{d\lambda }S(\mathcal {P}(\lambda,\,u))=\frac {1}{\lambda }Q(\mathcal {P}(\lambda,\,u))$ for each $\lambda >0$.

  7. (vii) $|\mathcal {P}(\lambda,\,u)|^*=\mathcal {P}(\lambda,\,|u|^*)$ for each $\lambda >0$, where $*$ is the Schwarz symmetrization.

  8. (viii) If $u_m\rightharpoonup u$ in $H^1(\mathbb {R}^2)$ weakly and in $L^{p}(\mathbb {R}^2)$ strongly, then $\mathcal {P}(\lambda,\,u_m)\rightarrow \mathcal {P}(\lambda,\,u)$ in $H^1(\mathbb {R}^2)$ weakly and in $L^{p}(\mathbb {R}^2)$ strongly for each $\lambda >0$.

Proof. Let $u\in H^1(\mathbb {R}^2)$, $u\neq 0$, and let $u_\lambda =\mathcal {P}(\lambda,\,u)$. We have

\begin{align*} f(\lambda)& :=S(u_\lambda) =\frac{\lambda^2}{2}\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+\frac{b\lambda^4}{4}\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2\\ & \quad +\frac{\omega}{2}\int_{\mathbb{R}^2}|u|^2\,{\rm d}x-\frac{\lambda^{p-2}}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x. \end{align*}

Then

\[ f'(\lambda)=\lambda\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+b\lambda^3\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2-\frac{(p-2)\lambda^{p-3}}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x, \]

so that

\[ \frac{d}{d\lambda}S(\mathcal{P}(\lambda,u))=\frac{1}{\lambda}Q(\mathcal{P}(\lambda,u)), \]

Consequently, property (vi) holds. It follows from $f'(\lambda )=0$ that

(3.1)\begin{equation} \int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+b\lambda^2\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2-\frac{(p-2)\lambda^{p-4}}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x=0. \end{equation}

Thus

\begin{align*} f''(\lambda)& =\displaystyle\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+3b\lambda^2\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2\\ & \quad\displaystyle-\frac{(p-2)(p-3)\lambda^{p-4}}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x\\ & ={-}(p-4)\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x-b(p-6)\lambda^2\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2\\ & <\displaystyle0, \end{align*}

which implies that (3.1) has a unique positive solution $\lambda ^*(u)$ (by Rello's theorem). In particular, $f$ achieves its maximum at $\lambda ^*(u)$. Therefore, properties (i), (ii) and (v) follow.

(iii) Let $\lambda ^*(u)$ be the solution of (3.1), namely

(3.2)\begin{equation} \int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+b(\lambda^*(u))^2\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2-\frac{(p-2)(\lambda^*(u))^{p-4}}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x=0. \end{equation}

If $Q(u)<0$. Then

\[ \int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+b\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2-\frac{p-2}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x<0, \]

which implies that

\[ b\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2<\frac{p-2}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x. \]

If $\lambda ^*(u)\geq 1$. By (3.2), we deduce that

\begin{align*} 0& > \int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+b\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2-\frac{p-2}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x\\ & \quad -\displaystyle\left[\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+b(\lambda^*(u))^2\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2-\frac{(p-2)(\lambda^*(u))^{p-4}}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x\right]\\ & =\displaystyle\frac{p-2}{p}[(\lambda^*(u))^{p-4}-1]\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x+b(1-(\lambda^*(u))^2)\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2\\ & \geq \displaystyle\frac{p-2}{p}[(\lambda^*(u))^{p-4}-1]\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x+(1-(\lambda^*(u))^2)\frac{p-2}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x\\ & = \displaystyle\frac{p-2}{p}[(\lambda^*(u))^{p-4}-(\lambda^*(u))^2]\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x\\ & = \displaystyle\frac{p-2}{p}(\lambda^*(u))^2[(\lambda^*(u))^{p-6}-1]\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x, \end{align*}

which is impossible. This implies that if $Q(u)<0$ then $\lambda ^*(u)<1$. Now we claim that $Q(u)<0$ when $\lambda ^*(u)<1$. Indeed, $\lambda ^*(u)<1$ leads to

\[ b\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2\leq\frac{(p-2)(\lambda^*(u))^{p-6}}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x<\frac{p-2}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x. \]

Therefore,

\begin{align*} Q(u)& =\displaystyle\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+b\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2-\frac{p-2}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x\\ & =\displaystyle\frac{(p-2)(\lambda^*(u))^{p-4}}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x-b(\lambda^*(u))^2\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2\\ & \quad +b\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2-\frac{p-2}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x\\ & =\displaystyle\frac{p-2}{p}[(\lambda^*(u))^{p-4}-1]\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x+b(1-(\lambda^*(u))^2)\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2\\ & <\displaystyle\frac{p-2}{p}[(\lambda^*(u))^{p-4}-1]\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x+(1-(\lambda^*(u))^2)\frac{p-2}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x\\ & =\displaystyle\frac{p-2}{p}[(\lambda^*(u))^{p-4}-(\lambda^*(u))^2]\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x\\ & =\displaystyle\frac{p-2}{p}(\lambda^*(u))^2[(\lambda^*(u))^{p-6}-1]\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x\\ & < 0. \end{align*}

Thus, property (iii) follows.

(iv) If $\lambda ^*(u)=1$, it follows from (3.2) that $u\in M$. On the other hand, assume $u\in M$, then

\[ \begin{cases} \displaystyle\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+b\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2-\frac{p-2}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x=0,\\ \displaystyle\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+b(\lambda^*(u))^2\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2-\frac{(p-2)(\lambda^*(u))^{p-4}}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x=0, \end{cases} \]

so that

(3.3)\begin{equation} \frac{p-2}{p}[1-(\lambda^*(u))^{p-4}]\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x+b((\lambda^*(u))^2-1)\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2=0. \end{equation}

If $\lambda ^*(u)>1$, using (3.3), we have

\begin{align*} 0& =\displaystyle\frac{p-2}{p}[1-(\lambda^*(u))^{p-4}]\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x+b((\lambda^*(u))^2-1)\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2\\ & <\displaystyle b[1-(\lambda^*(u))^{p-4}]\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2+b((\lambda^*(u))^2-1)\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2\\ & =\displaystyle b(\lambda^*(u))^2(1-(\lambda^*(u))^{p-6})\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2\\ & < 0. \end{align*}

Consequently, $\lambda ^*(u)\leq 1$. Similarly, we can reach a contradiction for the case of $\lambda ^*(u)<1$. As a result, $\lambda ^*(u)=1$.

Finally, property (vii) follows easily from the definition of Schwarz's symmetrization. For (viii), given $\lambda >0$, the operator $u\mapsto \mathcal {P}(\lambda,\,u)$ is linear and strongly continuous $H^1(\mathbb {R}^2)\rightarrow H^1(\mathbb {R}^2)$. Therefore, it is also weakly continuous. The $L^{p}(\mathbb {R}^2)$ continuity is immediate. Thus (viii) follows. This ends the proof.

Lemma 3.2 The set $M$ is nonempty. If we set

(3.4)\begin{equation} m=\inf\{S(u): u\in M\}, \end{equation}

then $Q(u)\leq S(u)-m$ for every $u\in H^1(\mathbb {R}^2)$ such that $Q(u)<0$.

Proof. The set $M$ is nonempty from lemma 3.1 (i). Let $u\in H^1(\mathbb {R}^2)$ such that $Q(u)<0$. By lemma 3.1 (ii) (iii), $f''(x)\leq 0$ on $(\lambda ^*(u),\, 1)$. Therefore,

\[ f(x)=f(1)+f'(1)(x-1)+\frac{f''(\xi)}{2}(x-1)^2\leq f(1)+f'(1)(x-1), \]

which means

\[ f(1)\geq f(\lambda^*(u))+f'(1)(1-\lambda^*(u)). \]

Applying lemma 3.1 (vi), we obtain

\begin{align*} S(u)& \geq f(\lambda^*(u))+(1-\lambda^*(u))Q(u)\\ & \geq f(\lambda^*(u))+Q(u). \end{align*}

Noting that $\lambda ^*(u)\in M$, we have $f(\lambda ^*(u))=S(\lambda ^*(u))\geq m$, and so

\[ S(u)\geq m+Q(u), \]

which completes the proof.

Proof. Proof of theorem 1.2

We proceed in three steps.

Step 1. We claim that the minimization problem (3.4) has a solution.

Since $M\neq \emptyset$, $S$ has a minimizing sequence $\{v_n\}$. In particular, $Q(v_n)=0$ and $S(v_n)\rightarrow m$. Let $w_n=|v_n|^*$, and $u_n=\mathcal {P}(\lambda ^*(w_n),\,w_n)$. It follows from lemma 3.1 (i) that $u_n\in M$. Furthermore, it follows from lemma 3.1 (vii) that $u_n=|\mathcal {P}(\lambda ^*(w_n),\,v_n)|^*$. Therefore,

\begin{align*} S(u_n)& \leq S(\mathcal{P}(\lambda^*(w_n),v_n))\leq S(\mathcal{P}(\lambda^*(v_n),v_n)) \ (\mathrm{by~Lemma~} 3.1\ (\mathrm{v}))\\ & \leq S(v_n) \ (\mathrm{since} \ \lambda^*(v_n)=1). \end{align*}

In particular, $\{u_n\}$ is a nonnegative, spherically symmetric, nonincreasing minimizing sequence of $S$. Furthermore, note that as $n\rightarrow \infty$

\begin{align*} m\displaystyle\leftarrow S(u_n)-\frac{1}{p-2}Q(u_n)& =\displaystyle\left(\frac{1}{2}-\frac{1}{p-2}\right)\int_{\mathbb{R}^2}|\nabla u_n|^2\,{\rm d}x \\ & \quad +b\left(\frac{1}{4}-\frac{1}{p-2}\right)\left(\int_{\mathbb{R}^2}|\nabla u_n|^2\,{\rm d}x\right)^2+\frac{\omega}{2}\int_{\mathbb{R}^2}|u_n|^2\,{\rm d}x\\ & \geq \displaystyle\left(\frac{1}{2}-\frac{1}{p-2}\right)\int_{\mathbb{R}^2}|\nabla u_n|^2\,{\rm d}x+\frac{\omega}{2}\int_{\mathbb{R}^2}|u_n|^2\,{\rm d}x, \end{align*}

which implies that $\{u_n\}$ is bounded in $H^1(\mathbb {R}^2)$. Since $Q(u_n)=0$, then

(3.5)\begin{equation} \frac{p}{p-2}\int_{\mathbb{R}^2}|\nabla u_n|^2\,{\rm d}x\leq\int_{\mathbb{R}^2}|u_n|^{p}\,{\rm d}x. \end{equation}

Therefore, by the Gagliardo–Nirenberg inequality and the boundedness of $\{u_n\}$ in $L^2(\mathbb {R}^2)$, there exists a constant $C>0$ such that

\[ \int_{\mathbb{R}^2}|\nabla u_n|^2\,{\rm d}x\leq C\left(\int_{\mathbb{R}^2}|\nabla u_n|^2\,{\rm d}x\right)^{\frac{p-2}{2}}. \]

We obtain that $|\nabla u_n|_{L^2}$ is bounded from below, and so it follows from (3.5) that

(3.6)\begin{equation} \int_{\mathbb{R}^2}|u_n|^{p}\,{\rm d}x\geq c, \ \mathrm{for~some}\ c>0. \end{equation}

Therefore, there exist $v\in H^1(\mathbb {R}^2)$ and a subsequence, which we still denoted by $\{u_n\}$, such that $u_n\rightharpoonup v$ in $H^1(\mathbb {R}^2)$ weakly and in $L^{p}(\mathbb {R}^2)$ strongly ($v\neq 0$, by (3.6)). Therefore, we may define $\zeta =\mathcal {P}(\lambda ^*(v),\,v)=\lambda ^*(v)v(\lambda ^*(v)x)$. By lemma 3.1 (i), it follows directly that $\zeta \in M$, and hence

\[ S(\zeta)\geq m. \]

On the other hand, according to lemma 3.1 (viii), we know that $\mathcal {P}(\lambda ^*(v),\,u_n)\rightharpoonup \zeta$ in $H^1(\mathbb {R}^2)$ weakly and in $L^{p}(\mathbb {R}^2)$ strongly. Therefore,

\begin{align*} S(\zeta)& \leq \displaystyle\liminf_{n\rightarrow\infty} S(\mathcal{P}(\lambda^*(v),u_n)) \\ & \leq \displaystyle\liminf_{n\rightarrow\infty} S(\mathcal{P}(\lambda^*(u_n),u_n))\\ & = \displaystyle\liminf_{n\rightarrow\infty} S(u_n)=m \ (\mathrm{since}\ \lambda^*(u_n)=1). \end{align*}

Consequently, we obtain $S(\zeta )=m$. Thus, $\zeta$ is the solution of (3.4).

Step 2. We claim that every solution of (3.4) satisfies equation (1.1).

Consider any solution $u$ of (3.4). We have

\[ S(u)=m. \]

Then $\langle S'(u),\,u\rangle _{H^{-1},\,H^1}=0$, where $S'$ is the gradient of the $C^1$ functional $S$, i.e.,

\[ S'(u)={-}\left(1+b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)\Delta u+\omega u-|u|^{p-2}u. \]

Notice that

\[ Q'(u)={-}\left(2+4b\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)\Delta u-(p-2)|u|^{p-2}u. \]

It follows from $u\in M$ that

\begin{align*} \langle Q'(u),u\rangle_{H^{{-}1},H^1}& = \displaystyle2\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x+4b\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2\\ & \quad -(p-2)\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x -pQ(u)\\ & =\displaystyle-(p-2)\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x-(p-4)b\left(\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)^2\\ & < 0. \end{align*}

Finally, since $u$ solves (3.4), there exists a Lagrange multiplier $\lambda$ such that

\[ S'(u)=\lambda Q'(u). \]

Thus,

\[ 0=\langle S'(u),u\rangle_{H^{{-}1},H^1}=\lambda \langle Q'(u),u\rangle_{H^{{-}1},H^1}. \]

Noting that $\langle Q'(u),\,u\rangle _{H^{-1},\,H^1}<0$, we obtain $\lambda =0$. Consequently, $S'(u)=0$, which means that $u$ solves problem (1.1).

Step 3. Conclusion.

Consider

(3.7)\begin{equation} l=\min\{S(u): u\in A\}. \end{equation}

Let $u\in G$ be such that $S(u)=l$. Now we claim that $u\in M$. Indeed, since $u$ is a solution of equation (1.1), we have $V(u)=0$ and

\[ T(u)=\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x-\omega\int_{\mathbb{R}^2}|u|^2\,{\rm d}x. \]

Thus

\begin{align*} Q(u)& = \displaystyle T(u)-\frac{p-2}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x\\ & = \displaystyle\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x-\omega\int_{\mathbb{R}^2}|u|^2\,{\rm d}x-\frac{p-2}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x\\ & =\displaystyle\frac{2}{p}\int_{\mathbb{R}^2}|u|^{p}\,{\rm d}x-\omega\int_{\mathbb{R}^2}|u|^2\,{\rm d}x\\ & =\displaystyle\frac{1}{2}V(u)\\ & = 0. \end{align*}

Therefore, $u\in M$, which implies that $S(u)\geq m$. In particular

(3.8)\begin{equation} l=S(u)\geq m. \end{equation}

Consider now a solution $v$ of (3.4). Since $S(v)=m$ and $v\in A$ (by Step 2), it follows from (3.7) that $m\geq l$. Combining with (3.8), we obtain $m=l$. The equivalence of the two problems follows easily. The proof is complete.

Acknowledgements

The authors would like to thank the anonymous referees and the editors for value comments.

The research of Chunyu Lei is supported by Science and Technology Foundation of Guizhou Province (No. ZK[2022]199), The Natural Science Research Project of Department of Education of Guizhou Province (Grant Nos. QJJ2022015,QJJ2023012,QJJ2023061,QJJ2023062) and the High-Level Innovative Talent Project of Guizhou Province (Grant no. QKHPTRC-GCC2023027). The research of Binlin Zhang was supported by National Natural Science Foundation of China (No. 1187 1199 and No. 12171152) and Cultivation Project of Young and Innovative Talents in Universities of Shandong Province.

References

Autuori, G., Fiscella, A. and Pucci, P.. Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal. 125 (2015), 699714.CrossRefGoogle Scholar
Berestycki, H., Gallouët, T. and Kavian, O.. Équations de champs scalaires euclidiens non linéaires dans le plan. C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), 307310.Google Scholar
Berestycki, H. and Lions, P. L.. Nonlinear scalar field equations. Arch. Ration. Mech. AnaI. 82 (1983), 313375.CrossRefGoogle Scholar
Cazenave, T.. Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, Vol. 10 (Providence, RI: American Mathematical Society, 2003).CrossRefGoogle Scholar
Chen, C., Kuo, Y. and Wu, T.. The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions. J. Differ. Equ. 250 (2011), 18761908.CrossRefGoogle Scholar
Chen, J. and Yu, F.. On a nonhomogeneous Kirchhoff-type elliptic problem with critical exponential in dimension two. Appl. Anal. 101 (2022), 421436.CrossRefGoogle Scholar
Deng, Y., Peng, S. and Shuai, W.. Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $\mathbb {R}^3$. J. Funct. Anal. 269 (2015), 35003527.CrossRefGoogle Scholar
Figueiredo, G. M., Ikoma, N. and Júnior, J. R. S.. Existence and concentration result for the Kircchhoff type equations with general nonlinearities. Arch. Ration. Mech. Anal. 213 (2014), 931979.CrossRefGoogle Scholar
Figueiredo, G. M. and Jünior, J. R. S.. Multiplicity and concentration behavior of positive solutions for a Schrödinger–Kircchhoff type problem via penalization method. ESAIM Control Optim. Calc. Var. 20 (2014), 389415.CrossRefGoogle Scholar
Gidas, B., Ni, W. and Nirenberg, L., Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb {R}^n$. Mathematical analysis and applications, Part A, Advances in Mathematics Supplementary Studies, Vol. 7. (Academic, New York–London, 1981), pp. 369–402.Google Scholar
He, X. and Zou, W.. Existence and concentration of positive solutions for a Kirchhoff equation in $\mathbb {R}^3$. J. Differ. Equ. 252 (2012), 18131834.CrossRefGoogle Scholar
He, Y., Li, G. and Peng, S.. Concentrating bound states for Kirchhoff type problems in $\mathbb {R}^3$ involving critical Sobolev exponents. Adv. Nonlinear Stud. 14 (2014), 441468.CrossRefGoogle Scholar
Huang, Y., Liu, Z. and Wu, Y.. On Kirchhoff type equations with critical Sobolev exponent. J. Math. Anal. Appl. 462 (2018), 483504.CrossRefGoogle Scholar
Ikoma, N.. Existence of ground state solutions to the the nonlinear Kirchhoff type equations with potentials. Discrete Contin. Dyn. Syst. 35 (2015), 943966.CrossRefGoogle Scholar
Jünior, J. R. S. and Siciliano, G.. Positive solutions for a Kirchhoff problem with vanishing nonlocal term. J. Differ. Equ. 265 (2018), 20342043.CrossRefGoogle Scholar
Jin, J. and Wu, X.. Infinitely many radial solutions for Kirchhoff-type problems in $\mathbb {R}^N$. J. Math. Anal. Appl. 369 (2010), 564574.CrossRefGoogle Scholar
Kirchhoff, G.. Mechanik (Leipzig: Teabnes, 1883).Google Scholar
Kwong, M. K.. Uniqueness of positive solutions of $-\Delta u-u+u^p=0$ in $\mathbb {R}^n$. Arch. Ration. Mech. Anal. 105 (1989), 243266.CrossRefGoogle Scholar
Li, G., Luo, P., Peng, S., Wang, C. H. and Xiang, C. L.. A singularly perturbed Kirchhoff problem revisited. J. Differ. Equ. 268 (2020), 541589.CrossRefGoogle Scholar
Li, G. and Ye, H. Y.. Existence of positive solutions for nonlinear Kirchhoff type equations in $\mathbb {R}^3$ with critical Sobolev exponent. Math. Meth. Appl. Sci. 37 (2014), 25702584.CrossRefGoogle Scholar
Li, Y., Li, F. and Shi, J.. Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ. Equ. 253 (2012), 22852294.CrossRefGoogle Scholar
Lions, J. L., On some questions in boundary value problems of mathematical physics. In Contemporary Developments in Continuum Methanics and Partial Differential Equations, Proc. Internat. Sympos. Inst. Mat. Univ. Fed. Rio de Janeiro (1997), Vol. 30, (North-Holland Math. Stud, 1978), pp. 284–346.Google Scholar
Liu, J., Hou, A. and Liao, J.. Multiplicity of positive solutions for a class of singular elliptic equations with critical Sobolev exponent and Kirchhoff-type nonlocal term. Electron. J. Qual. Theory Differ. Equ. 100 (2018), 120.CrossRefGoogle Scholar
Naimen, D.. The critical problem of Kirchhoff type elliptic equations in dimension four. J. Differ. Equ. 257 (2014), 11681193.CrossRefGoogle Scholar
Perera, K. and Zhang, Z.. Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 221 (2006), 246255.CrossRefGoogle Scholar
Qi, S. and Zou, W.. Exact number of positive solutions for the Kirchhoff equation. SIAM J. Math. Anal. 54 (2022), 54245446.CrossRefGoogle Scholar
Wang, J., Tian, L., Xu, J. and Zhang, F.. Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Equ. 253 (2012), 23142351.CrossRefGoogle Scholar
Wang, L., Xie, K. and Zhang, B.. Existence and multiplicity of solutions for critical Kirchhoff-type $p$-Laplacian problems. J. Math. Anal. Appl. 458 (2018), 361378.CrossRefGoogle Scholar
Wei, J., Tang, X. and Zhang, L., Ground state solutions for planar periodic Kirchhoff type equation with critical exponential growth. Math. Methods Appl. Sci. https://doi.org/10.1002/mma.8308.Google Scholar