Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T06:34:37.791Z Has data issue: false hasContentIssue false

Coastal occupation and foraging during the last glacial maximum and early Holocene at Waterfall Bluff, eastern Pondoland, South Africa

Published online by Cambridge University Press:  14 May 2020

Erich C. Fisher*
Affiliation:
Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe, USA African Centre for Coastal Palaeoscience, Nelson Mandela University, Port Elizabeth, South Africa Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
Hayley C. Cawthra
Affiliation:
African Centre for Coastal Palaeoscience, Nelson Mandela University, Port Elizabeth, South Africa Geophysics and Remote Sensing Unit, Council for Geoscience Western Cape regional office, Cape Town, South Africa
Irene Esteban
Affiliation:
African Centre for Coastal Palaeoscience, Nelson Mandela University, Port Elizabeth, South Africa Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
Antonieta Jerardino
Affiliation:
Department of Anthropology and Archaeology, School of Humanities, University of South Africa, Pretoria, South Africa
Frank H. Neumann
Affiliation:
Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
Annette Oertle
Affiliation:
Department of Archaeology, Faculty of Arts and Social Science, School of Philosophical and Historical Inquiry, University of Sydney, Sydney, Australia
Justin Pargeter
Affiliation:
Department of Anthropology, New York University, NY, USA Rock Art Research Institute, School of Geography, Archaeology, and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
Rosaria B. Saktura
Affiliation:
Centre for Archaeological Science, School of Earth, Atmospheric, and Life Sciences, University of Wollongong, NSW, Australia
Katherine Szabó
Affiliation:
Monash Indigenous Studies Centre, Monash University, Clayton VIC3800, Australia Museum of Archaeology and Anthropology, University of Cambridge, CambridgeUK
Stephan Winkler
Affiliation:
NRF/iThemba Laboratory for Accelerator Based Sciences, Braamfontein 2001, Johannesburg, South Africa
Irit Zohar
Affiliation:
Beit Margolin Biological Collections, Oranim Academic College, Kiryat Tivon, Israel Zinman Institute of Archaeology, University of Haifa, Mount Carmel, Haifa, Israel
*
*Corresponding author at: Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe, USA. E-mail address: [email protected] (E.C. Fisher).

Abstract

Waterfall Bluff is a rock shelter in eastern Pondoland, South Africa, adjacent to a narrow continental shelf that limited coastline movements across glacial/interglacial cycles. The archaeological deposits are characterized by well-preserved stratigraphy, faunal, and botanical remains alongside abundant stone artifacts and other materials. A comprehensive dating protocol consisting of 5 optically stimulated luminescence ages and 51 accelerator mass spectrometry 14C ages shows that the record of hunter-gatherer occupations at Waterfall Bluff persisted from the late Pleistocene to the Holocene, spanning the last glacial maximum and the transition from the Pleistocene to the Holocene. Here, we provide detailed descriptions about the sedimentary sequence, chronology, and characteristics of the archaeological deposits at Waterfall Bluff. Remains of marine mollusks and marine fish also show, for the first time, that coastal foraging was a component of some hunter-gatherer groups’ subsistence practices during glacial phases in the late Pleistocene. The presence of marine fish and shellfish further demonstrates that hunter-gatherers selectively targeted coastal resources from intertidal and estuarine habitats. Our results therefore underscore the idea that Pondoland's coastline remained a stable and predictable point on the landscape over the last glacial/interglacial transition being well positioned for hunter-gatherers to access resources from the nearby coastline, narrow continental shelf, and inland areas.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aitken, M.J., 1998. An Introduction to Optical Dating. Oxford University Press, New York.Google Scholar
Amante, C., Eakins, B., 2009. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24.Google Scholar
Anderson, D.G., Maasch, K.A., Sandweiss, D.H., Mayewski, P.A., 2007. Chapter 1 — Climate and culture change: Exploring Holocene transitions. In: Anderson, D.G., Maasch, K.A., Sandweiss, D.H. (Eds.), Climate Change and Cultural Dynamics. Academic Press, San Diego, pp. 123.Google Scholar
Bader, G., Cable, C., Lentfer, C., Conard, N., 2016. Umbeli Belli Rock Shelter, a forgotten piece from the puzzle of the Middle Stone Age in KwaZulu-Natal, South Africa. Journal of Archaeological Science: Reports 9, 608622.10.1016/j.jasrep.2016.08.038CrossRefGoogle Scholar
Bernatchez, J.A., Marean, C.W., 2011. Total station archaeology and the use of digital photography. SAA Archaeological Record 11, 1621.Google Scholar
Binford, L.R., 1980. Willow smoke and dogs' tails: Hunter-gatherer settlement systems and archaeological site formation. American Antiquity 45, 420.CrossRefGoogle Scholar
Bird, D.W., Bliege Bird, R.L., 1997. Contemporary Shellfish Gathering Strategies among the Meriam of the Torres Strait Islands, Australia: Testing Predictions of a Central Place Foraging Model. Journal of Archaeological Science 24, 3963.10.1006/jasc.1995.0095CrossRefGoogle Scholar
Bird, D.W., Richardson, J.L., Veth, P.M., Barham, A.J., 2002. Explaining shellfish variability in middens on the Meriam Islands, Torres Strait, Australia. Journal of Archaeological Science 29, 457469.10.1006/jasc.2001.0734CrossRefGoogle Scholar
Bosman, C., 2013. The marine geology of the Aliwal Shoal, Scottburgh, South Africa. Ph.D. dissertation, University of Kwa-Zulu Natal.Google Scholar
Bøtter-Jensen, L. and Mejdahl, V., 1988. Assessment of beta dose-rate using a GM multicounter system. Nuclear tracks and radiation measurements 14, 187-191.10.1016/1359-0189(88)90062-3CrossRefGoogle Scholar
Bradfield, J., 2019. Fishing with gorges: Testing a functional hypothesis. Journal of Archaeological Science: Reports 24, 593607.CrossRefGoogle Scholar
Branch, G.M., Griffiths, C.L., Branch, M.L., Beckley, L.E., 2010. Two oceans: A guide to marine life of southern Africa. D. Philip, Cape Town.Google Scholar
Butler, V., 1992. Distinguishing natural from cultural salmonid deposits in Pacific Northwest North America. Ph.D. dissertation, University of Washington.Google Scholar
Cable, C., 1984. Economy and technology in the Late Stone Age of southern Natal. BAR, Oxford.10.30861/9780860542582CrossRefGoogle Scholar
Cannon, D.Y., 1987. Marine fish osteology: a manual for archaeologists. Archaeology Press, Simon Fraser University Burnaby, British Columbia, Canada.Google Scholar
Cawe, S.G., 1994. Rainfall and vegetation patterns in Transkei and environs. South African Journal of Science 90, 7985.Google Scholar
Cawthra, H.C., Uken, R., Ovechkina, M., 2012. New insights into the geological evolution of the Durban Bluff and adjacent Blood Reef, Durban, South Africa. South African Journal of Geology 115, 291308.10.2113/gssajg.115.3.291CrossRefGoogle Scholar
Celliers, L., Mann, B., Macdonald, A., Schleyer, M., 2007. A benthic survey of the rocky reefs off Pondoland, South Africa. African Journal of Marine Science 29, 6577.10.2989/AJMS.2007.29.1.6.72CrossRefGoogle Scholar
Chandler, G., Merry, C., 2010. The South African Geoid 2010: SAGEOID10. Position IT, 2933.Google Scholar
Chase, B.M., Faith, J.T., Mackay, A., Chevalier, M., Carr, A.S., Boom, A., Lim, S., Reimer, P.J., 2018. Climatic controls on Later Stone Age human adaptation in Africa's southern Cape. Journal of Human Evolution 114, 3544.10.1016/j.jhevol.2017.09.006CrossRefGoogle ScholarPubMed
Chubb, E.C., King, G.B., Mogg, A.O.D., 1934. A new variation of Smithfield culture from a cave on the Pondoland coast. Transactions of the Royal Society of South Africa 22, 245267.10.1080/00359193409519342CrossRefGoogle Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M., 2009. The Last Glacial Maximum. Science 325, 710714.10.1126/science.1172873CrossRefGoogle ScholarPubMed
Collins, J.A., Carr, A.S., Schefuß, E., Boom, A., Sealy, J., 2017. Investigation of organic matter and biomarkers from Diepkloof Rock Shelter, South Africa: Insights into Middle Stone Age site usage and palaeoclimate. Journal of Archaeological Science 85, 5165.10.1016/j.jas.2017.06.011CrossRefGoogle Scholar
Cooper, R., Mahrose, K.M., Horbańczuk, J., Villegas-Vizcaíno, R., Sebei, S., Mohammed, A.E., 2009. The wild ostrich (Struthio camelus): a review. Tropical Animal Health and Production 41, 1669.10.1007/s11250-009-9364-1CrossRefGoogle ScholarPubMed
Copeland, S.R., Cawthra, H.C., Fisher, E.C., Lee-Thorp, J.A., Cowling, R.M., le Roux, P.J., Hodgkins, J., Marean, C.W., 2016. Strontium isotope investigation of ungulate movement patterns on the Pleistocene Paleo-Agulhas Plain of the Greater Cape Floristic Region, South Africa. Quaternary Science Reviews 141, 6584.10.1016/j.quascirev.2016.04.002CrossRefGoogle Scholar
Cunningham, A.C., 2016. External beta dose rates to mineral grains in shell-rich sediment. Ancient TL 34, 15.Google Scholar
Davies, O., 1976. The ‘Sangoan’ industries. Annals of the South African Museum 22, 885911.Google Scholar
Davies, O., 1982. The Paleolithic sequence at Umgababa ilmenite diggings, South Africa. Annals of the Natal Museum 25, 4160.Google Scholar
Deacon, J., 1984. The Later Stone Age of southernmost Africa, Cambridge monographs in African archaeology. British Archaeological Reports International Series. BAR, Oxford.Google Scholar
Dingle, R., Birch, G.F., Bremner, J.M., De Decker, R.H., Du Plessis, A., Engelbrecht, J.C., Fincham, M.J., et al. ., 1987. Bathymetry Around Southern Africa (SE Atlantic & SW Indian Oceans), scale 1: 3,475,000 at Lat. 30°. University of Cape Town, Cape Town.Google Scholar
Duller, G., 2004. Luminescence dating of Quaternary sediments: recent advances. Journal of Quaternary Science 19, 183192.10.1002/jqs.809CrossRefGoogle Scholar
Duncan, R.A., Hooper, P., Rehacek, J., Marsh, J., Duncan, A., 1997. The timing and duration of the Karoo igneous event, southern Gondwana. Journal of Geophysical Research: Solid Earth 102, 1812718138.CrossRefGoogle Scholar
Eagles, G., 2007. New angles on South Atlantic opening. Geophysical Journal International 168, 353361.10.1111/j.1365-246X.2006.03206.xCrossRefGoogle Scholar
Esteban, I., Bamford, M., Miller, C., Neumann, F.H., Schefuß, E., Zabel, M., Pargeter, J., Cawthra, H.C., Fisher, E.C., 2019. 22nd Conference of the Southern African Society for Quaternary Research. South Africa; Mossel Bay, South Africa.Google Scholar
Faith, J.T., 2013. Taphonomic and paleoecological change in the large mammal sequence from Boomplaas Cave, western Cape, South Africa. Journal of Human Evolution 65, 715730.10.1016/j.jhevol.2013.09.001CrossRefGoogle ScholarPubMed
Faith, J.T., 2014. Late Pleistocene and Holocene mammal extinctions on continental Africa. Earth-Science Reviews 128, 105121.10.1016/j.earscirev.2013.10.009CrossRefGoogle Scholar
Feely, J.M., 1980. Did Iron Age man have a role in the history of Zululand's wilderness landscapes. South African Journal of Science 76, 150152.Google Scholar
Feely, J.M., 1985. Smelting in the Iron Age of Transkei. South African Journal of Science 81, 1011.Google Scholar
Feely, J.M., 1986. The distribution of Iron Age farming settlement in Transkei, 470 to 1870. University of Natal.Google Scholar
Feely, J.M., Bell-Cross, S.M., 2011. The distribution of Early Iron Age settlement in the Eastern Cape: Some historical and ecological implications. South African Archaeological Bulletin 66, 105112.Google Scholar
Fisher, E.C., 2016. The P5 Project: Research questions, current results and future directions. The Digging Stick 33, 15.Google Scholar
Fisher, E.C., Akkaynak, D., Harris, J., Herries, A.I.R., Jacobs, Z., Karkanas, P., Marean, C.W., McGrath, J.R., 2015. Technical considerations and methodology for creating high-resolution, color-corrected, and georectified photomosaics of stratigraphic sections at archaeological sites. Journal of Archaeological Science 57, 380394.10.1016/j.jas.2015.02.022CrossRefGoogle Scholar
Fisher, E.C., Albert, R.-M., Botha, G., Cawthra, H.C., Esteban, I., Harris, J., Jacobs, Z., et al. ., 2013. Archaeological reconnaissance for Middle Stone Age sites along the Pondoland Coast, South Africa. PaleoAnthropology, 104137.Google Scholar
Fisher, E.C., Bar-Matthews, M., Jerardino, A., Marean, C.W., 2010. Middle and Late Pleistocene paleoscape modeling along the southern coast of South Africa. Quaternary Science Reviews 29, 13821398.10.1016/j.quascirev.2010.01.015CrossRefGoogle Scholar
Flemming, B., 1981. Factors controlling shelf sediment dispersal along the southeast African continental margin. Marine Geology 42, 259277.CrossRefGoogle Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia, part 1: Experimental design and statistical models. Archaeometry 41, 339364.10.1111/j.1475-4754.1999.tb00987.xCrossRefGoogle Scholar
Goodwin, A.J.H., van Riet Lowe, C., 1929. The Stone Age Cultures of South Africa. Annals of the South African Museum.Google Scholar
Granadeiro, J., Silva, M., 2000. The use of otoliths and vertebrae in the identification and size-estimation of fish in predator-prey studies. Cybium 24, 383393.Google Scholar
Granger, J.E., Hall, M., McKenzie, B., Feely, J.M., 1985. Archaeological research on plant and animal husbandry in Transkei. South African Journal of Science 81, 1215.Google Scholar
Grayson, D.K., 1984. Quantitative Zooarchaeology. Academic Press, New York.Google Scholar
Hendey, Q.B., Volman, T.P., 1986. Last interglacial sea levels and coastal caves in the Cape Province, South Africa. Quaternary Research 25, 189198.CrossRefGoogle Scholar
Heroy, D.C., Anderson, J.B., 2007. Radiocarbon constraints on Antarctic Peninsula Ice Sheet retreat following the Last Glacial Maximum (LGM). Quaternary Science Reviews 26, 32863297.10.1016/j.quascirev.2007.07.012CrossRefGoogle Scholar
Hogg, A.G., Hua, Q., Blackwell, P.G., Niu, M., Buck, C.E., Guilderson, T.P., Heaton, T.J., et al. , 2016. SHCal13 Southern Hemisphere Calibration, 0–50,000 Years cal BP. Radiocarbon 55, 18891903.10.2458/azu_js_rc.55.16783CrossRefGoogle Scholar
Huntley, D.J., Godfrey-Smith, D.I., Thewalt, M.L.W., 1985. Optical dating of sediments. Nature 313, 105107.CrossRefGoogle Scholar
Jacobs, Z., Wintle, A.G., Roberts, R.G., Duller, G.A.T., 2008. Equivalent dose distributions from single grains of quartz at Sibudu, South Africa: Context, causes and consequences for optical dating of archaeological deposits. Journal of Archaeological Science 35, 18081820.10.1016/j.jas.2007.11.027CrossRefGoogle Scholar
Jerardino, A., 1997. Changes in shellfish species composition and mean shell size from a late-Holocene record of the west coast of southern Africa. Journal of Archaeological Science 24, 10311044.10.1006/jasc.1997.0182CrossRefGoogle Scholar
Jerardino, A., 2016a. On the origins and significance of Pleistocene coastal resource use in southern Africa with particular reference to shellfish gathering. Journal of Anthropological Archaeology 41, 213230.10.1016/j.jaa.2016.01.001CrossRefGoogle Scholar
Jerardino, A., 2016b. Shell density as proxy for reconstructing prehistoric aquatic resource exploitation, perspectives from southern Africa. Journal of Archaeological Science: Reports 6, 637644.10.1016/j.jasrep.2015.06.005CrossRefGoogle Scholar
Jerardino, A., 2017. Water-worn shell and pebbles in shell middens as proxies of palaeoenvironmental reconstruction, shellfish procurement and their transport: A case study from the West Coast of South Africa. Quaternary International 427, 103114.10.1016/j.quaint.2015.06.057CrossRefGoogle Scholar
Jerardino, A., 2018. Shell Fragmentation Beyond Screen-Size and the Reconstruction of Intra-Site Settlement Patterns: A Case Study from the West Coast of South Africa. In: Giovas, C., LeFebvre, M. (Eds.), Zooarchaeology in Practice: Case Studies in Methodology and Interpretation in Archaeofaunal Analysis. Springer, pp. 151171.10.1007/978-3-319-64763-0_8CrossRefGoogle Scholar
Jerardino, A., Navarro, R., 2008. Shell morphometry of seven limpet species from coastal shell middens in southern Africa. Journal of Archaeological Science In Press, Corrected Proof.10.1016/j.jas.2007.07.004CrossRefGoogle Scholar
Johnson, M., Karpeta, W., 1979. Geological map series of South Africa, 1:250,000. Umtata sheet., South Africa Geological Survey. Geologic Maps 1:250,000. Council for Geoscience, Pretoria.Google Scholar
Jury, M.R., Valentine, H.R., Lutjeharms, J.R.E., 1993. Influence of the Agulhas Current on summer rainfall along the southeast coast of South Africa. Journal of Applied Meteorology 32, 12821287.2.0.CO;2>CrossRefGoogle Scholar
Kaplan, J., 1990. The Umhlatuzana rock shelter sequence: 100,000 years of Stone Age history. Natal Museum Journal of Humanities 2, 194.Google Scholar
Karkanas, P., Brown, K.S., Fisher, E.C., Jacobs, Z., Marean, C.W., 2015. Interpreting human behavior from depositional rates and combustion features through the study of sedimentary microfacies at site Pinnacle Point 5–6, South Africa. Journal of Human Evolution 85, 121.10.1016/j.jhevol.2015.04.006CrossRefGoogle Scholar
Keller, H.M., Hodgkins, J.M., Cleghorn, N.E., 2019. Nutritional stress and marine exploitation: Subsistence strategies at KEH-1, South Africa, during the Middle and Later Stone Age transition, Paleoanthropology Society Meeting Abstracts, Albuquerque, NM, 910 April, 2019. Paleoanthropology, Albuquerque, NM.Google Scholar
Kilburn, R., Rippey, E., 1982. Sea shells of southern Africa. Macmillan, Johannesburg.Google Scholar
Kingsley, C.S., Marshall, C.G.A., 2009. Lithostratigraphy of the Msikaba formation (Cape Supergroup). South African Council for Geoscience, Lithographic Series, No. 50, Pretoria.Google Scholar
Kirch, P.V., 2005. Archaeology and global change: The Holocene Record. Annual Review of Environment and Resources 30, 409440.CrossRefGoogle Scholar
Klein, R.G., 1972. The late Quaternary mammalian fauna of Nelson Bay Cave (Cape Province, South Africa): Its implications for megafaunal extinctions and environmental and cultural change. Quaternary Research 2, 135142.10.1016/0033-5894(72)90034-8CrossRefGoogle Scholar
Klein, R.G., 1976. The mammalian fauna of the Klasies River Mouth sites, southern Cape Province, South Africa. South African Archaeological Bulletin 31, 7598.10.2307/3887730CrossRefGoogle Scholar
Kuman, K., Clarke, R.J., 2005. The Red Sands: KwaZulu-Natal and Transkei Coast near Port Edwards, Report on a research visit, 4 to 11 September, 2005, University of Witwatersrand.Google Scholar
Lawes, M.J., Eeley, H.A.C., Findlay, N.J., Forbes, D., 2007. Resilient forest faunal communities in South Africa: a legacy of palaeoclimatic change and extinction filtering? Journal of Biogeography 34, 12461264.CrossRefGoogle Scholar
Loftus, E., Pargeter, J., Mackay, A., Stewart, B., Mitchell, P., 2019. Late Pleistocene human occupation in the Maloti-Drakensberg region of southern Africa: New radiocarbon dates from Rose Cottage Cave and inter-site comparisons. Journal of Anthroplogical Archaeology 56.Google Scholar
Lombard, M., Wadley, L., Deacon, J., Wurz, S., Parsons, I., Mohapi, M., Swart, J., Mitchell, P., 2012. South African and Lesotho Stone Age sequence updates (I). South African Archaeological Bulletin 67, 123140.Google Scholar
Low, M., 2019. Continuity, Variability and the Nature of Technological Change During the Late Pleistocene at Klipfonteinrand Rockshelter in the Western Cape, South Africa. African Archaeological Review 36, 6788.10.1007/s10437-018-9318-yCrossRefGoogle Scholar
Low, M., Mackay, A., 2016. The late Pleistocene microlithic at Putslaagte 8 rockshelter in the Western Cape, South Africa. South African Archaeological Bulletin 71, 146159.Google Scholar
Maggs, J., 2011. Fish surveys in exploited and protected areas of the Pondoland Marine Protected Area with consideration of the impact of the MPA on coastal fisheries. Ph.D. dissertation, University of KwaZulu-Natal, Durban.Google Scholar
Maggs, J., Mann, B., Cowley, P., 2013. Contribution of a large no-take zone to the management of vulnerable reef fishes in the South-West Indian Ocean. Fisheries Research 144, 3847.10.1016/j.fishres.2012.10.003CrossRefGoogle Scholar
Marean, C.W., 2016. The transition to foraging for dense and predictable resources and its impact on the evolution of modern humans. Philosophical Transactions of the Royal Society B: Biological Sciences 371, 2015.0239.CrossRefGoogle ScholarPubMed
Marean, C.W., Bar-Matthews, M., Bernatchez, J., Fisher, E., Goldberg, P., Herries, A.I.R., Jacobs, Z., et al. , 2007. Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature 449, 905908.CrossRefGoogle ScholarPubMed
Martin, A.K., Flemming, B.W., 1987. Aeolianites of the South African coastal zone and continental shelf as sea-level indicators. South African Journal of Science 83, 507508.Google Scholar
Martin, A.K., Hartnady, C., 1986. Plate tectonic development of the South West Indian Ocean: A revised reconstruction of East Antarctica and Africa. Journal of Geophysical Research: Solid Earth 91, 47674786.CrossRefGoogle Scholar
Mbele, V., Mullins, S., Winkler, S., Woodborne, S., 2017. Acceptance Tests for AMS Radiocarbon Measurements at iThemba LABS, Gauteng, South Africa. Physics Procedia 90, 1016.10.1016/j.phpro.2017.09.009CrossRefGoogle Scholar
McQuaid, C., Lindsay, J., Lindsay, T., 2000. Interactive effects of wave exposure and tidal height on population structure of the mussel Perna perna. Marine Biology 137, 925932.CrossRefGoogle Scholar
Mitchell, P., 1988. The early microlithic assemblages of southern Africa, British Archaeology Series. BAR, Oxford.CrossRefGoogle Scholar
Mitchell, P., 1993. Archaeological investigations at two Lesotho rock-shelters: Terminal Pleistocene/early Holocene assemblages from Ha Makotoko and Ntloana Tsoana. Proceedings of the Prehistoric Society. Cambridge University Press, pp. 39–60.10.1017/S0079497X00003741CrossRefGoogle Scholar
Mitchell, P., 1996. Prehistoric exchange and interaction in southeastern southern africa: Marine shells and ostrich eggshell. African Archaeological Review 13, 3576.10.1007/BF01956132CrossRefGoogle Scholar
Mitchell, P., Arthur, C., 2014. Ha Makotoko: Later stone age occupation across the Pleistocene/Holocene transition in western Lesotho. Journal of African Archaeology 12, 205232.CrossRefGoogle Scholar
Morales Muñiz, A., Rosenlund, K., 1979. Fish Bone Measurements; An Attempt to Standardize the Measuring of Fish Bones from Archaeological Sites. Steenstrupia, 148.Google Scholar
Mucina, L., Geldenhuys, C.J., 2006. Afrotemperate, subtropical, and azonal forests. In: Mucina, L., Rutherford, M.C. (Eds.), The Vegetation of South Africa, Lesotho, and Swaziland. South African National Biodiversity Institute, Pretoria, pp. 585614.Google Scholar
Mucina, L., Scott-Shaw, C.R., Rutherford, M.C., Camp, K.G.T., Matthews, W.S., Powrie, L.W., Hoare, D.B., 2006. Indian Ocean coastal Belt. In: Mucina, L., Rutherford, M.C. (Eds.), The Vegetation of South Africa, Lesotho, and Swaziland. South African National Biodiversity Institute, Pretoria, pp. 568583.Google Scholar
Murray, A.S., Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.10.1016/S1350-4487(99)00253-XCrossRefGoogle Scholar
Oestmo, S., Marean, C., 2014. Pinnacle Point: Excavation and Survey Methods. In: Smith, C. (Ed.), Encyclopedia of Global Archaeology. Springer, pp. 59555959.CrossRefGoogle Scholar
Opperman, H., 1984. A report on excavations at Grassridge Rock Shelter, Sterkstroom District, Cape Province. Fort Hare Papers 7, 391–406.Google Scholar
Opperman, H., 1996. Strathalan Cave B, north-eastern Cape Province, south Africa: Evidence for human behaviour 29,000–26,000 years ago. Quaternary International 33, 4553.10.1016/1040-6182(95)00096-8CrossRefGoogle Scholar
Pargeter, J., Loftus, E., Mitchell, P., 2017. New ages from Sehonghong rock shelter: Implications for the late Pleistocene occupation of highland Lesotho. Journal of Archaeological Science: Reports 12, 307315.10.1016/j.jasrep.2017.01.027CrossRefGoogle Scholar
Parkington, J., 2001. Mobility, seasonality and southern African hunter-gatherers. South African Archaeological Review LVI, 17.Google Scholar
Parkington, J., 2003. Middens and moderns: shellfishing and the Middle Stone Age of the Western Cape, South Africa. South African Journal of Science 99, 243247.Google Scholar
Parkington, J., 2006. Shorelines, Strandlopers and Shell Middens. Krakadouw Trust, Cape Town.Google Scholar
Parkington, J., 2012. Mussels and mongongo nuts: Logistical visits to the Cape west coast, South Africa. Journal of Archaeological Science 39, 15211530.CrossRefGoogle Scholar
Peeters, F.J.C., Acheson, R., Brummer, G.-J.A., de Ruijter, W.P.M., Schneider, R.R., Ganssen, G.M., Ufkes, E., Kroon, D., 2004. Vigorous exchange between the Indian and Atlantic oceans at the end of the past five glacial periods. Nature 430, 661665.CrossRefGoogle ScholarPubMed
Penrith, M., 1970. The distribution of the fishes of the family Clinidae in southern Africa. Annals of the South African Museum 55(3): 134150Google Scholar
Plug, I., Mitchell, P., 2008. Sehonghong: hunter-gatherer utilization of animal resources in the highlands of Lesotho. Annals of the Transvaal Museum 45, 3153.Google Scholar
Porraz, G., Igreja, M., Schmidt, P., Parkington, J., 2016. A shape to the microlithic Robberg from Elands Bay Cave (South Africa). Southern African Humanities 29, 203247.Google Scholar
Pretorius, L., Green, A., Cooper, J., Hahn, A., Zabel, M. 2019. Outer-to inner-shelf response to stepped sea-level rise: Insights from incised valleys and submerged shorelines. Marine Geology, 105979.CrossRefGoogle Scholar
Price, S.F., Conway, H., Waddington, E.D., 2007. Evidence for late Pleistocene thinning of Siple Dome, West Antarctica. Journal of Geophysical Research: Earth Surface 112, https://doi.org/10.1029/2006JF000725.CrossRefGoogle Scholar
Puchegger, S., Rom, W., Steier, P., 2000. Automated evaluation of 14C AMS measurements. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 172, 274280.CrossRefGoogle Scholar
Purcell, C., 2014. Investigations of the warm and cold water route ocean gateways on glacial-interglacial and millennial timescales. Ph.D. dissertation, Cardiff University.Google Scholar
Ramsey, C., 2009a. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.10.1017/S0033822200033865CrossRefGoogle Scholar
Ramsey, C., 2009b. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 10231045.CrossRefGoogle Scholar
Reitz, E.J., Wing, E.S., 1999. Zooarchaeology. Cambridge University Press, New York.Google Scholar
Ridgway, S.A., 1998. A cladistic phylogeny of the family Patellidae (Mollusca: Gastropoda). Philosophical Transactions: Biological Sciences 353, 16451671.CrossRefGoogle Scholar
Roberts, P., Henshilwood, C.S., van Niekerk, K.L., Keene, P., Gledhill, A., Reynard, J., Badenhorst, S., Lee-Thorp, J., 2016. Climate, Environment and Early Human Innovation: Stable Isotope and Faunal Proxy Evidence from Archaeological Sites (98–59ka) in the Southern Cape, South Africa. PLoS ONE 11, e0157408.CrossRefGoogle ScholarPubMed
Roberts, P., Lee-Thorp, J.A., Mitchell, P.J., Arthur, C., 2013. Stable carbon isotopic evidence for climate change across the late Pleistocene to early Holocene from Lesotho, southern Africa. Journal of Quaternary Science 28, 360369.CrossRefGoogle Scholar
Roberts, P., Stewart, B.A., 2018. Defining the ‘generalist specialist’ niche for Pleistocene Homo sapiens. Nature Human Behaviour 2, 542550.CrossRefGoogle ScholarPubMed
Roberts, R.G., Jacobs, Z., Li, B., Jankowski, N.R., Cunningham, A.C., Rosenfeld, A.B., 2015. Optical dating in archaeology: thirty years in retrospect and grand challenges for the future. Journal of Archaeological Science 56, 4160.10.1016/j.jas.2015.02.028CrossRefGoogle Scholar
Rojo, A.L., 1991. Dictionary of evolutionary fish osteology. CRC Press: New York.Google Scholar
Schapera, I., 1923. Bushman arrow poisons. Bantu Studies 2, 199214.10.1080/02561751.1923.9676184CrossRefGoogle Scholar
Schumann, E.H., Cohen, A.L., Jury, M.R., 1995. Coastal sea surface temperature variability along the south coast of South Africa and the relationship to regional and global climate. Journal of Marine Research 53, 231248.10.1357/0022240953213205CrossRefGoogle Scholar
Schweitzer, F.R., Wilson, M.L., 1982. Byneskranskop 1. A Late Quaternary Living Site in the Southern Cape Province, South Africa. Annals of the South African Museum 88, 1203.Google Scholar
Sealy, J., Lee-Thorp, J., Loftus, E., Faith, J.T., Marean, C.W., 2016. Late Quaternary environmental change in the Southern Cape, South Africa, from stable carbon and oxygen isotopes in faunal tooth enamel from Boomplaas Cave. Journal of Quaternary Science 31, 919927.CrossRefGoogle Scholar
Simon, M.H., Arthur, K.L., Hall, I.R., Peeters, F.J.C., Loveday, B.R., Barker, S., Ziegler, M., Zahn, R., 2013. Millennial-scale Agulhas Current variability and its implications for salt-leakage through the Indian–Atlantic Ocean Gateway. Earth and Planetary Science Letters 383, 101112.10.1016/j.epsl.2013.09.035CrossRefGoogle Scholar
Simon, M.H., Gong, X., Hall, I.R., Ziegler, M., Barker, S., Knorr, G., van der Meer, M.T., Kasper, S., Schouten, S., 2015a. Salt exchange in the Indian-Atlantic Ocean Gateway since the Last Glacial Maximum: A compensating effect between Agulhas Current changes and salinity variations? Paleoceanography 30, https://doi.org/10.1002/2015PA002842.CrossRefGoogle Scholar
Simon, M.H., Ziegler, M., Bosmans, J., Barker, S., Reason, C.J.C., Hall, I.R., 2015b. Eastern South African hydroclimate over the past 270,000 years. Scientific Reports 5, 18153.CrossRefGoogle Scholar
Smith, M., 1980. Marine fishes of Maputaland. In: Bruton, M.N., Cooper, K.H. (Eds.), Studies on the Ecology of Maputaland. Rhodes University, Grahamstown, 164187.Google Scholar
Steig, E.J., Brook, E.J., White, J.W.C., Sucher, C.M., Bender, M.L., Lehman, S.J., Morse, D.L., Waddington, E.D., Clow, G.D., 1998. Synchronous Climate Changes in Antarctica and the North Atlantic. Science 282, 9295.CrossRefGoogle ScholarPubMed
Stewart, B., Mitchell, P., 2016. Beyond the shadow of a desert: aquatic resource intensification on the roof of southern Africa. Hunter-gatherer Diversity in Prehistory. University of Colorado Press, Boulder.Google Scholar
Stewart, B., Mitchell, P., 2018. Late Quaternary palaeoclimates and human-environment dynamics of the Maloti-Drakensberg region, southern Africa. Quaternary Science Reviews 196, 120.CrossRefGoogle Scholar
Thompson, J.C., 2010. Taphonomic analysis of the Middle Stone Age faunal assemblage from Pinnacle Point Cave 13B, Western Cape, South Africa. Journal of Human Evolution 59, 321339.10.1016/j.jhevol.2010.07.004CrossRefGoogle ScholarPubMed
Thompson, J.C., Henshilwood, C.S., 2011. Taphonomic analysis of the Middle Stone Age larger mammal faunal assemblage from Blombos Cave, southern Cape, South Africa. Journal of Human Evolution 60, 746767.CrossRefGoogle ScholarPubMed
Turpie, J., Beckley, L., Katua, S., 2000. Biogeography and the selection of priority areas for conservation of South African coastal fishes. Biological Conservation 92, 5972.CrossRefGoogle Scholar
van Andel, T.H., 1989. Late Pleistocene Sea Levels and the Human Exploitation of the Shore and Shelf of Southern South Africa. Journal of Field Archaeology 16, 133155.Google Scholar
van Erkom Schurink, C., Griffiths, C., 1993. Factors affecting relative rates of growth in four South African mussel species. Aquaculture 109, 257273.CrossRefGoogle Scholar
Van Wyk, A., 1996. Biodiversity of the Maputaland centre. In: van der Maesen, L.J.G.,van Medenbach, de Rooy (Eds.) The biodiversity of African Plants. Dordrecht: Kluwer Academic Publishers, 198207.CrossRefGoogle Scholar
Vinnicombe, P., 1976. People of the Eland: Rock Paintings of the Drakensberg Bushmen as a Reflection of their Life and Thought. University of Natal Press, Pietermaritzburg.Google Scholar
Vogel, J., Fuls, A., Visser, E., 1986. Pretoria radiocarbon dates III. Radiocarbon 28, 11331172.10.1017/S003382220002018XCrossRefGoogle Scholar
Wadley, L., 1991. Rose Cottage Cave: background and a preliminary report on the recent excavations. The South African Archaeological Bulletin, 125130.10.2307/3889091CrossRefGoogle Scholar
Wadley, L., 1993. The Pleistocene Later Stone Age south of the Limpopo River. Journal of World Prehistory 7, 243296.CrossRefGoogle Scholar
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J.C., McManus, J.F., Lambeck, K., Balbon, E., Labracherie, M., 2002. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews 21, 295-305.10.1016/S0277-3791(01)00101-9CrossRefGoogle Scholar
Wheeler, A., Jones, A., 1976. Fish remains. In: Rogerson, A. (Ed.), Excavations on Fuller's Hill, Great Yarmouth. East Anglian Archaeology report, pp. 208–224.Google Scholar
Winter, A., Martin, K., 1990. Late Quaternary history of the Agulhas Current. Paleoceanography 5, 479486.CrossRefGoogle Scholar
Wintle, A.G., 1997. Luminescence dating: laboratory procedures and protocols. Radiation Measurements 27, 769817.10.1016/S1350-4487(97)00220-5CrossRefGoogle Scholar
Wintle, A.G., 2014. Luminescence dating methods. In: Holland, H.D., Turekian, K.K. (Eds.) Treatise on Geochemistry, Second Edition. Elsevier, pp. 1735.CrossRefGoogle Scholar
Wright, J.B., 1971. Bushman raiders of the Drakensberg, 1840–1870: A study of their conflict with stock-keeping peoples in Natal. University of Natal Press, Pietermaritzburg.Google Scholar
Yokoyama, Y., Esat, T.M., Thompson, W.G., Thomas, A.L., Webster, J.M., Miyairi, Y., Sawada, C., et al. ., 2018. Rapid glaciation and a two-step sea level plunge into the Last Glacial Maximum. Nature 559, 603607.CrossRefGoogle Scholar
Zohar, I., Cooke, R., 1997. The impact of salting and drying on fish bones: preliminary observations on four marine species from Parita Bay, Panama. Archaeofauna 6, 5966.Google Scholar
Zohar, I., Cooke, R., 2019. The role of dried fish: A taphonomical model of fish butchering and long-term preservation. Journal of Archaeological Science: Reports 26, 101864.CrossRefGoogle Scholar
Zohar, I., Dayan, T., Spanier, E., 1997. Predicting grey triggerfish body size from bones. International Journal of Osteoarchaeology 7, 150156.3.0.CO;2-T>CrossRefGoogle Scholar
Supplementary material: File

Fisher et al. supplementary material

Fisher et al. supplementary material

Download Fisher et al. supplementary material(File)
File 51.6 MB