Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T22:49:37.620Z Has data issue: false hasContentIssue false

REILLY-TYPE UPPER BOUNDS FOR THE p-STEKLOV PROBLEM ON SUBMANIFOLDS

Published online by Cambridge University Press:  28 February 2023

JULIEN ROTH
Affiliation:
Université Gustave Eiffel, CNRS, LAMA UMR 8050, F-77447 Marne-la-Vallée, France e-mail: [email protected]
ABHITOSH UPADHYAY*
Affiliation:
School of Mathematics and Computer Science, Indian Institute of Technology, Goa 403401, India

Abstract

We prove Reilly-type upper bounds for the first nonzero eigenvalue of the Steklov problem associated with the p-Laplace operator on submanifolds of manifolds with sectional curvature bounded from above by a nonnegative constant.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The second author gratefully acknowledges the financial support from the Indian Institute of Technology Goa through Start-up Grant 2021/SG/AU/043.

References

Alias, L. J. and Malacarné, J. M., ‘On the first eigenvalue of the linearised operator of the higher order mean curvature for closed hypersurfaces in space forms’, Illinois J. Math. 48(1) (2004), 219240.10.1215/ijm/1258136182CrossRefGoogle Scholar
Browder, F., ‘Existence theorems for nonlinear partial differential equations’, in: Global Analysis, Proceedings of the Symposia in Pure Mathematics, XVI (eds. Chern, S.-S. and Smale, S.) (American Mathematical Society, Providence, RI, 1970), 160.Google Scholar
Chen, H., ‘Extrinsic upper bound of the eigenvalue for $p$ -Laplacian’, Nonlinear Anal. 196 (2020), Article no. 111833.10.1016/j.na.2020.111833CrossRefGoogle Scholar
Chen, H. and Gui, X., ‘Reilly-type inequalities for submanifolds in Cartan–Hadamard manifolds’, Preprint, 2022, arXiv:2206.11164.Google Scholar
Chen, H. and Wei, G., ‘Reilly-type inequalities for $p$ -Laplacian on submanifolds in space forms’, Nonlinear Anal. 184 (2019), 210217.10.1016/j.na.2019.02.009CrossRefGoogle Scholar
Du, F. and Mao, J., ‘Reilly-type inequalities for $p$ -Laplacian on compact Riemannian manifolds’, Front. Math. China 10(3) (2015), 583594.10.1007/s11464-015-0422-xCrossRefGoogle Scholar
El Soufi, A. and Ilias, S., ‘Une inégalité du type “Reilly” pour les sous-variétés de l’espace hyperbolique’, Comment. Math. Helv. 67(2) (1992), 167181.10.1007/BF02566494CrossRefGoogle Scholar
Girouard, A. and Polterovich, I., ‘Spectral geometry of the Steklov problem’, J. Spectr. Theory 7(2) (2017), 321359.10.4171/JST/164CrossRefGoogle Scholar
Grosjean, J. F., ‘Upper bounds for the first eigenvalue of the Laplacian on compact manifolds’, Pacific J. Math. 206(1) (2002), 93111.10.2140/pjm.2002.206.93CrossRefGoogle Scholar
Grosjean, J. F., ‘Extrinsic upper bounds for the first eigenvalue of elliptic operators’, Hokkaido Math. J. 33(2) (2004), 319339.10.14492/hokmj/1285766168CrossRefGoogle Scholar
Heintze, E., ‘Extrinsic upper bounds for ${\lambda}_1$ ’, Math. Ann. 280(3) (1988), 389402.10.1007/BF01456332CrossRefGoogle Scholar
Ilias, S. and Makhoul, O., ‘A Reilly inequality for the first Steklov eigenvalue’, Differential Geom. Appl. 29(5) (2011), 699708.10.1016/j.difgeo.2011.07.005CrossRefGoogle Scholar
, A., ‘Eigenvalue problems for the $p$ -Laplacian’, Nonlinear Anal. 64(5) (2006), 10571099.10.1016/j.na.2005.05.056CrossRefGoogle Scholar
Lima, B. P., Montenegro, J. F. B. and Santos, N. L., ‘Eigenvalue estimates for the $p$ -Laplace operator on manifolds’, Nonlinear Anal. 72 (2010), 771781.10.1016/j.na.2009.07.019CrossRefGoogle Scholar
Manfio, F., Roth, J. and Upadhyay, A., ‘Extrinsic eigenvalues upper bounds for submanifolds in weighted manifolds’, Ann. Global Anal. Geom. 62 (2022), 489505.10.1007/s10455-022-09862-0CrossRefGoogle Scholar
Reilly, R. C., ‘On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space’, Comment. Math. Helv. 52 (1977), 525533.10.1007/BF02567385CrossRefGoogle Scholar
Roth, J., ‘General Reilly-type inequalities for submanifolds of weighted Euclidean spaces’, Colloq. Math. 144(1) (2016), 127136.Google Scholar
Roth, J., ‘Reilly-type inequalities for Paneitz and Steklov eigenvalues’, Potential Anal. 53(3) (2020), 773798.10.1007/s11118-019-09787-7CrossRefGoogle Scholar
Roth, J., ‘Extrinsic upper bounds for the first eigenvalue of the $p$ -Steklov problem on submanifolds’, Commun. Math. 30(1) (2022), Article no. 5.Google Scholar
Torné, O., ‘Steklov problem with an indefinite weight for the $p$ -Laplacian’, Electron. J. Differential Equations 87 (2005), 18.Google Scholar
Verma, S., ‘Upper bounds for the first nonzero eigenvalue related to the $p$ -Laplacian’, Proc. Indian Acad. Sci. 130 (2020), Article no. 21.Google Scholar