Hostname: page-component-669899f699-cf6xr Total loading time: 0 Render date: 2025-04-25T14:17:37.763Z Has data issue: false hasContentIssue false

Rotational Taylor dispersion in linear flows

Published online by Cambridge University Press:  08 October 2024

Zhiwei Peng*
Affiliation:
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 1H9
*
Email address for correspondence: [email protected]

Abstract

The coupling between advection and diffusion in position space can often lead to enhanced mass transport compared with diffusion without flow. An important framework used to characterize the long-time diffusive transport in position space is the generalized Taylor dispersion theory. In contrast, the dynamics and transport in orientation space remains less developed. In this work we develop a rotational Taylor dispersion theory that characterizes the long-time orientational transport of a spheroidal particle in linear flows that is constrained to rotate in the velocity-gradient plane. Similar to Taylor dispersion in position space, the orientational distribution of axisymmetric particles in linear flows at long times satisfies an effective advection–diffusion equation in orientation space. Using this framework, we then calculate the long-time average angular velocity and dispersion coefficient for both simple shear and extensional flows. Analytic expressions for the transport coefficients are derived in several asymptotic limits including nearly spherical particles, weak flow and strong flow. Our analysis shows that at long times the effective rotational dispersion is enhanced in simple shear and suppressed in extensional flow. The asymptotic solutions agree with full numerical solutions of the derived macrotransport equations and results from Brownian dynamics simulations. Our results show that the interplay between flow-induced rotations and Brownian diffusion can fundamentally change the long-time transport dynamics.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alonso-Matilla, R., Chakrabarti, B. & Saintillan, D. 2019 Transport and dispersion of active particles in periodic porous media. Phys. Rev. Fluids 4 (4), 043101.10.1103/PhysRevFluids.4.043101CrossRefGoogle Scholar
Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. A 235 (1200), 6777.Google Scholar
Barakat, J.M. & Takatori, S.C. 2023 Enhanced dispersion in an oscillating array of harmonic traps. Phys. Rev. E 107, 014601.10.1103/PhysRevE.107.014601CrossRefGoogle Scholar
Bearon, R.N. 2003 An extension of generalized Taylor dispersion in unbounded homogeneous shear flows to run-and-tumble chemotactic bacteria. Phys. Fluids 15 (6), 15521563.10.1063/1.1569482CrossRefGoogle Scholar
Brenner, H. 1970 Orientation-space boundary layers in problems of rotational diffusion and convection at large rotary Péclet numbers. J. Colloid Interface Sci. 34 (1), 103125.10.1016/0021-9797(70)90264-XCrossRefGoogle Scholar
Brenner, H. 1980 Dispersion resulting from flow through spatially periodic porous media. Phil. Trans. R. Soc. A 297 (1430), 81133.Google Scholar
Brenner, H. & Condiff, D.W. 1974 Transport mechanics in systems of orientable particles. IV. Convective transport. J. Colloid Interface Sci. 47 (1), 199264.10.1016/0021-9797(74)90093-9CrossRefGoogle Scholar
Brenner, H. & Edwards, D.A. 1993 Macrotransport Processes. Butterworth-Heinemann.Google Scholar
Bretherton, F.P. 1962 The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14 (2), 284304.CrossRefGoogle Scholar
Burkholder, E.W. & Brady, J.F. 2017 Tracer diffusion in active suspensions. Phys. Rev. E 95, 052605.10.1103/PhysRevE.95.052605CrossRefGoogle Scholar
Carrasco-Fadanelli, V., Mao, Y., Nakakomi, T., Xu, H., Yamamoto, J., Yanagishima, T. & Buttinoni, I. 2024 Rotational diffusion of colloidal microspheres near flat walls. Soft Matt. 20, 20242031.CrossRefGoogle ScholarPubMed
De Michele, C. & Leporini, D. 2001 Viscous flow and jump dynamics in molecular supercooled liquids. II. Rotations. Phys. Rev. E 63, 036702.CrossRefGoogle ScholarPubMed
Dhont, J.K.G. 1996 An Introduction to Dynamics of Colloids. Elsevier.Google Scholar
Doi, M. & Edwards, S.F. 1988 The Theory of Polymer Dynamics, vol. 73. Oxford University Press.Google Scholar
Foister, R.T. & Van De Ven, T.G.M. 1980 Diffusion of Brownian particles in shear flows. J. Fluid Mech. 96 (1), 105132.10.1017/S0022112080002042CrossRefGoogle Scholar
Frankel, I. & Brenner, H. 1989 On the foundations of generalized Taylor dispersion theory. J. Fluid Mech. 204, 97119.CrossRefGoogle Scholar
Hill, N.A. & Bees, M.A. 2002 Taylor dispersion of gyrotactic swimming micro-organisms in a linear flow. Phys. Fluids 14 (8), 25982605.CrossRefGoogle Scholar
Hinch, E.J. & Leal, L.G. 1972 The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles. J. Fluid Mech. 52 (4), 683712.CrossRefGoogle Scholar
Hunter, G.L., Edmond, K.V., Elsesser, M.T. & Weeks, E.R. 2011 Tracking rotational diffusion of colloidal clusters. Opt. Express 19 (18), 1718917202.CrossRefGoogle ScholarPubMed
Jeffery, G.B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. A 102 (715), 161179.Google Scholar
Jiang, W. & Chen, G. 2019 Dispersion of active particles in confined unidirectional flows. J. Fluid Mech. 877, 134.10.1017/jfm.2019.562CrossRefGoogle Scholar
Kämmerer, S., Kob, W. & Schilling, R. 1997 Dynamics of the rotational degrees of freedom in a supercooled liquid of diatomic molecules. Phys. Rev. E 56, 54505461.CrossRefGoogle Scholar
Katayama, Y. & Terauti, R. 1996 Brownian motion of a single particle under shear flow. Eur. J. Phys. 17 (3), 136.CrossRefGoogle Scholar
Khair, A.S. 2016 On a suspension of nearly spherical colloidal particles under large-amplitude oscillatory shear flow. J. Fluid Mech. 791, R5.10.1017/jfm.2016.77CrossRefGoogle Scholar
Khair, A.S. 2022 Taylor dispersion of elongated rods at small and large rotational Péclet numbers. Phys. Rev. Fluids 7 (1), 014502.10.1103/PhysRevFluids.7.014502CrossRefGoogle Scholar
Krishnan, G.P. & Leighton, D.T., Jr. 1992 Diffusion from a point source in a time-dependent unbounded extensional flow. Phys. Fluids A 4 (11), 23272331.10.1063/1.858473CrossRefGoogle Scholar
Kumar, A.H., Thomson, S.J., Powers, T.R. & Harris, D.M. 2021 Taylor dispersion of elongated rods. Phys. Rev. Fluids 6 (9), 094501.CrossRefGoogle Scholar
Leahy, B.D., Cheng, X., Ong, D.C., Liddell-Watson, C. & Cohen, I. 2013 Enhancing rotational diffusion using oscillatory shear. Phys. Rev. Lett. 110, 228301.10.1103/PhysRevLett.110.228301CrossRefGoogle ScholarPubMed
Leahy, B.D., Koch, D.L. & Cohen, I. 2015 The effect of shear flow on the rotational diffusion of a single axisymmetric particle. J. Fluid Mech. 772, 4279.10.1017/jfm.2015.186CrossRefGoogle Scholar
Leal, L.G. & Hinch, E.J. 1971 The effect of weak Brownian rotations on particles in shear flow. J. Fluid Mech. 46 (4), 685703.CrossRefGoogle Scholar
Manela, A. & Frankel, I. 2003 Generalized Taylor dispersion in suspensions of gyrotactic swimming micro-organisms. J. Fluid Mech. 490, 99127.10.1017/S0022112003005147CrossRefGoogle Scholar
Mazza, M.G., Giovambattista, N., Stanley, H.E. & Starr, F.W. 2007 Connection of translational and rotational dynamical heterogeneities with the breakdown of the Stokes-Einstein and Stokes-Einstein-Debye relations in water. Phys. Rev. E 76, 031203.CrossRefGoogle ScholarPubMed
Mazza, M.G., Giovambattista, N., Starr, F.W. & Stanley, H.E. 2006 Relation between rotational and translational dynamic heterogeneities in water. Phys. Rev. Lett. 96, 057803.CrossRefGoogle ScholarPubMed
Morris, J.F. & Brady, J.F. 1996 Self-diffusion in sheared suspensions. J. Fluid Mech. 312, 223252.CrossRefGoogle Scholar
Orihara, H. & Takikawa, Y. 2011 Brownian motion in shear flow: direct observation of anomalous diffusion. Phys. Rev. E 84, 061120.CrossRefGoogle ScholarPubMed
Peng, Z. & Brady, J.F. 2020 Upstream swimming and Taylor dispersion of active Brownian particles. Phys. Rev. Fluids 5, 073102.CrossRefGoogle Scholar
Rogers, S.A., Lisicki, M., Cichocki, B., Dhont, J.K.G. & Lang, P.R. 2012 Rotational diffusion of spherical colloids close to a wall. Phys. Rev. Lett. 109, 098305.10.1103/PhysRevLett.109.098305CrossRefGoogle Scholar
San Miguel, M. & Sancho, J.M. 1979 Brownian motion in shear flow. Physica A 99 (1–2), 357364.10.1016/0378-4371(79)90143-2CrossRefGoogle Scholar
Shapiro, M. & Brenner, H. 1986 Taylor dispersion of chemically reactive species: irreversible first-order reactions in bulk and on boundaries. Chem. Engng Sci. 41 (6), 14171433.CrossRefGoogle Scholar
Shapiro, M. & Brenner, H. 1987 Chemically reactive generalized Taylor dispersion phenomena. AIChE J. 33 (7), 11551167.CrossRefGoogle Scholar
Shapiro, M. & Brenner, H. 1990 Taylor dispersion in the presence of time-periodic convection phenomena. Part II. Transport of transversely oscillating Brownian particles in a plane Poiseuille flow. Phys. Fluids 2 (10), 17441753.CrossRefGoogle Scholar
Singh, V., Koch, D.L. & Stroock, A.D. 2013 Rigid ring-shaped particles that align in simple shear flow. J. Fluid Mech. 722, 121158.10.1017/jfm.2013.53CrossRefGoogle Scholar
Takatori, S.C. & Brady, J.F. 2014 Swim stress, motion, and deformation of active matter: effect of an external field. Soft Matt. 10 (47), 94339445.10.1039/C4SM01409JCrossRefGoogle ScholarPubMed
Takatori, S.C. & Brady, J.F. 2017 Superfluid behavior of active suspensions from diffusive stretching. Phys. Rev. Lett. 118, 018003.10.1103/PhysRevLett.118.018003CrossRefGoogle ScholarPubMed
Takikawa, Y. & Orihara, H. 2012 Diffusion of Brownian particles under oscillatory shear flow. J. Phys. Soc. Japan 81 (12), 124001.10.1143/JPSJ.81.124001CrossRefGoogle Scholar
Taylor, G.I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. A 219 (1137), 186203.Google Scholar
Taylor, G.I. 1954 a Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proc. R. Soc. A 225 (1163), 473477.Google Scholar
Taylor, G.I. 1954 b The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. A 223 (1155), 446468.Google Scholar
Trefethen, L.N. 2000 Spectral Methods in MATLAB. SIAM.10.1137/1.9780898719598CrossRefGoogle Scholar
Zia, R.N. & Brady, J.F. 2010 Single-particle motion in colloids: force-induced diffusion. J. Fluid Mech. 658, 188210.10.1017/S0022112010001606CrossRefGoogle Scholar
Zwanzig, R. 2001 Nonequilibrium Statistical Mechanics. Oxford University Press.10.1093/oso/9780195140187.001.0001CrossRefGoogle Scholar