Hostname: page-component-669899f699-7tmb6 Total loading time: 0 Render date: 2025-04-30T21:50:48.665Z Has data issue: false hasContentIssue false

Inkjet-printed broadband FSS-based absorber with improved absorption characteristics

Published online by Cambridge University Press:  19 May 2023

Manish Mathew Tirkey*
Affiliation:
Department of Electronics and Communication Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
Nisha Gupta
Affiliation:
Department of Electronics and Communication Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
*
Corresponding author: Manish Mathew Tirkey, Email: [email protected]

Abstract

We present the design for a thin planar microwave absorber depicting near unity absorption over a wide bandwidth. The absorber consists of a single layer of resistive frequency selective surface inkjet printed over a paper substrate and suspended over a grounded foam. We have been able to achieve 99.99% absorption of normally incident radiations from 9.7 to 11.74 GHz at an extremely low level of −40 dB absorption bandwidth. The proposed absorber is thin (0.22λ0 at the center frequency), polarization-insensitive, and presents −10, −20, −30, and −40 dB fractional bandwidths as 89.83%, 55.41%, 33.30%, and 19.03%, respectively. It is worth mentioning that the design of an absorber with such steep slopes is highly stringent and requires special attention. Finally, we have experimentally demonstrated the perfect broadband absorption characteristics with a fabricated prototype.

Type
Metamaterials and Photonic Bandgap Structures
Copyright
© The Author(s), 2023. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Tirkey, MM and Gupta, N (2019) The quest for perfect electromagnetic absorber: A review. International Journal of Wireless and Microwave Technologies 11, 151167.10.1017/S1759078718001472CrossRefGoogle Scholar
Yu, P, Besteiro, LV, Huang, Y, Wu, J, Fu, L, Tan, HH, Jagadish, C, Wiederrecht, GP, Govorov, AO and Wang, Z (2019) Broadband metamaterial absorbers. Advanced Optical Materials 7, .10.1002/adom.201800995CrossRefGoogle Scholar
Tirkey, MM and Gupta, N (2019) Electromagnetic absorber design challenges. IEEE Transactions on Electromagnetic Compatibility 8, 5965.10.1109/MEMC.2019.8681370CrossRefGoogle Scholar
Vinoy, K and Jha, R (1995) Trends in radar absorbing materials technology. Sadhana 20, 815850.10.1007/BF02744411CrossRefGoogle Scholar
Emerson, W (1973) Electromagnetic wave absorbers and anechoic chambers through the years. IEEE Transactions on Antennas and Propagation 21, 484490.10.1109/TAP.1973.1140517CrossRefGoogle Scholar
Zhang, F, Jiang, C, Wang, Q, Zhao, Z, Wang, Y, Du, Z, Wang, C and Huang, X (2020) A multi-band closed-cell metamaterial absorber based on a low-permittivity all-dielectric structure. Applied Physics Express 13, .Google Scholar
Cheng, Y, Luo, H and Chen, F (2020) Broadband metamaterial microwave absorber based on asymmetric sectional resonator structures. Journal of Applied Physics 127, .10.1063/5.0002931CrossRefGoogle Scholar
Cheng, Y, Li, Z and Cheng, Z (2021) Terahertz perfect absorber based on InSb metasurface for both temperature and refractive index sensing. Optical Materials 117, .10.1016/j.optmat.2021.111129CrossRefGoogle Scholar
Zhao, J and Cheng, Y (2022) Temperature-tunable terahertz perfect absorber based on all-dielectric strontium titanate (STO) resonator structure. Advanced Theory and Simulations 5, .10.1002/adts.202200520CrossRefGoogle Scholar
Cheng, Y and Zhao, J (2022) Simple design of a six-band terahertz perfect metasurface absorber based on a single resonator structure. Physica Scripta 97, .10.1088/1402-4896/ac8ad6CrossRefGoogle Scholar
Li, Z, Cheng, Y, Luo, H, Chen, F and Li, X (2022) Dual-band tunable terahertz perfect absorber based on all-dielectric InSb resonator structure for sensing application. Journal of Alloys and Compounds 925, .10.1016/j.jallcom.2022.166617CrossRefGoogle Scholar
Xiong, Y, Chen, F, Cheng, Y and Luo, H (2022) Rational design and fabrication of optically transparent broadband microwave absorber with multilayer structure based on indium tin oxide. Journal of Alloys and Compounds 920, .10.1016/j.jallcom.2022.166008CrossRefGoogle Scholar
Yang, Z, Luo, F, Zhou, W, Jia, H and Zhu, D (2017) Design of a thin and broadband microwave absorber using double layer frequency selective surface. Journal of Alloys and Compounds 699, 534539.Google Scholar
Long, C, Yin, S, Wang, W, Li, W, Zhu, J and Guan, J (2016) Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode. Scientific Reports 6, 19.10.1038/srep21431CrossRefGoogle ScholarPubMed
Xiong, H, Hong, JS, Luo, CM and Zhong, LL (2013) An ultrathin and broadband metamaterial absorber using multi-layer structures. Journal of Applied Physics 114, .Google Scholar
Beeharry, T, Yahiaoui, R, Selemani, K and Ouslimani, HH (2018) A dual layer broadband radar absorber to minimize electromagnetic interference in radomes. Scientific Reports 8, 19.10.1038/s41598-017-18859-wCrossRefGoogle ScholarPubMed
Yuan, X, Zhang, C, Chen, M, Cheng, Q, Cheng, X, Huang, Y and Fang, D (2018) Wideband high-absorption electromagnetic absorber with chaos patterned surface. IEEE Antennas Wireless Propagation Letters 18, 197201.10.1109/LAWP.2018.2886049CrossRefGoogle Scholar
Tang, W, Goussetis, G, Legay, H and Fonseca, NJ (2014) Efficient synthesis of low-profile angularly-stable and polarization-independent frequency-selective absorbers with a reflection band. IEEE Transactions on Antennas and Propagation 63, 621629.10.1109/TAP.2014.2384041CrossRefGoogle Scholar
Zadeh, AK and Karlsson, A (2009) Capacitive circuit method for fast and efficient design of wideband radar absorbers. IEEE Transactions on Antennas and Propagation 57, 23072314.Google Scholar
Sohrab, AP and Atlasbaf, Z (2013) A circuit analog absorber with optimum thickness and response in X-band. IEEE Antennas Wireless Propagation Letters 12, 276279.10.1109/LAWP.2013.2248073CrossRefGoogle Scholar
Kazemzadeh, A (2010) Thin wideband absorber with optimal thickness. In 2010 URSI International Symposium on Electromagnetic Theory, IEEE, pp. 676679.Google Scholar
Gogoi, JP and Bhattacharyya, NS (2014) Expanded graphite-phenolic resin composites based double layer microwave absorber for X-band applications. Journal of Applied Physics 116, .10.1063/1.4902860CrossRefGoogle Scholar
Lim, D, Yu, S and Lim, S (2018) Miniaturized metamaterial absorber using three-dimensional printed stair-like jerusalem cross. IEEE Access 6, 4365443659.10.1109/ACCESS.2018.2862160CrossRefGoogle Scholar
Rozanov, KN (2000) Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Transactions on Antennas and Propagation 48, 12301234.10.1109/8.884491CrossRefGoogle Scholar
Landy, NI, Sajuyigbe, S, Mock, JJ, Smith, DR and Padilla, WJ (2008) Perfect metamaterial absorber. Physical Review Letters 100, .10.1103/PhysRevLett.100.207402CrossRefGoogle ScholarPubMed
Tirkey, MM and Gupta, N (2021) Broadband polarization-insensitive inkjet-printed conformal metamaterial absorber. IEEE Transactions on Electromagnetic Compatibility 63, 18291836.Google Scholar
Zabri, S, Cahill, R, Conway, G and Schuchinsky, A (2015) Inkjet printing of resistively loaded fss for microwave absorbers. Electronics Letters 51, 9991001.10.1049/el.2015.0696CrossRefGoogle Scholar