Hostname: page-component-f554764f5-rvxtl Total loading time: 0 Render date: 2025-04-21T02:05:56.877Z Has data issue: false hasContentIssue false

Never ending diversity: two new species of the genus Allocreadium (Digenea: Allocreadiidae) including new keys to the genus

Published online by Cambridge University Press:  28 October 2024

K.S. Vainutis*
Affiliation:
A. V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, 17 Palchevskogo Street, Russian Federation The Far Eastern State Technical Fisheries University (FESTFU), 52B Lugovaya Street, Vladivostok 690087, Russian Federation
*
Corresponding author: K.S. Vainutis; Email: [email protected]

Abstract

Two new species of the genus Allocreadium were isolated from the intestines of the Lake minnow Rhynchocypris percnura caught in the backwater of the Komissarovka River in the South of the Russian Far East. The morphology of A. anastasii n. sp. corresponds to that of Allocreadium sp. from Lake Khar (Mongolia) and Allocreadium sp. Belous, 1952 from the Primorsky region of Russia except for the preacetabular anterior border of the vitelline follicles in A. anastasii n. sp. from the Komissarovka River vs. at anterior half of ventral sucker in Allocreadium sp. Genetic analysis revealed the identity of A. anastasii n. sp. to Allocreadium sp. 1 from the Nezhinka River and Lake Khar. Allocreadium macrolecithum n. sp. was differentiated from Palaearctic Allocreadium spp. by having the following features: respectively large vitelline follicles extending from posterior extremity to anterior margin of the ventral sucker; relatively short caeca reaching the border of middle and posterior thirds of hindbody; and small testes in the middle of hindbody. Interspecific genetic p-distances between Allocreadium spp. were 0.16–7.23% in 28S gene and 18.62–31.54% in Cox1 mtDNA gene. In the phylogenetic tree reconstructed with Maximum parsimony and Bayesian Inference methods, A. anastasii n. sp. and A. macrolecithum n. sp. were nested into different species groups of the genus Allocreadium – sister to A. khankaiense and A. bursense, respectively. Modified dichotomous keys were prepared for 31 Palaearctic species of Allocreadium including A. crassum, A. dogieli, A. papilligerum, A. bursense, A. anastasii n. sp., and A. macrolecithum n. sp.

Type
Research Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Atopkin, DM, Sokolov, SG, Vainutis, KS, Voropaeva, EL, Shedko, MB, and Choudhury, A (2020) Amended diagnosis, validity and relationships of the genus Acrolichanus Ward, 1917 (Digenea: Allocreadiidae) based on the 28S rRNA gene, and observations on its lineage diversity. Systematic Parasitology 97, 143156. https://doi.org/10.1007/s11230-020-09901-zCrossRefGoogle ScholarPubMed
Aydogdu, N, Vainutis, KS, Voronova, AN, and Aydogdu, A (2023) Morphological and molecular evidence for the recognition of Allocreadium bursensis n. sp. (Trematoda: Allocreadiidae) from Angora loach Oxynoemacheilus angorae from Turkey. Journal of Helminthology 97, e48. http://doi.org/10.1017/S0022149X23000287CrossRefGoogle Scholar
Baer, JG (1959) Helminthes parasites. In Baer, J.G. and Gerber, W. (eds), Exploration du Parc national Congo Belge. Bruxelles: Institut des Parcs Nationaux du Congo Belge, p. 163.Google Scholar
Bauer, ON (1948) Parasites of the fishes in the Yenisei River. Izv. VNIORKh 27, 1150.Google Scholar
Bogatov, VV and Vainutis, KS (2022) About the origin of the family Allocreadiidae (Trematoda: Plagiorchiida). Doklady Biological Sciences 502(1), 104108. https://doi.org/10.31857/S268673892201005XCrossRefGoogle ScholarPubMed
Bray, RA, Foster, GN, Waeschenbach, A, and Littlewood, DTJ (2012) The discovery of progenetic Allocreadium neotenicum Peters, 1957 (Digenea: Allocreadiidae) in water beetles (Coleoptera: Dytiscidae) in Great Britain. Zootaxa 3577(1), 5870. https://doi.org/10.11646/zootaxa.3577.1.3CrossRefGoogle Scholar
Curran, SS, Tkach, VV, and Overstreet, RB (2006) A review of Polylekithum Arnold 1934 and its familial affinities using morphological and molecular data, with description of Polylekithum catahoulensis sp. nov. Acta Parasitologica 51(4), 238248. https://doi.org/10.2478/s11686-006-0037-1CrossRefGoogle Scholar
Darriba, D, Taboada, GL, Doallo, R, and Posada, D (2012) jModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9, 772. https://doi.org/10.1038/nmeth.2109CrossRefGoogle ScholarPubMed
Dos Santos, QM, Gilbert, BM, Avenant-Oldewage, A, and Dumbo, JC (2021) Morphological and molecular description of Allocreadium apokryfi sp. n. (Digenea: Allocreadiidae) from native Labeobarbus aeneus (Cyprinidae) in South Africa, including notes on its biology, evolutionary history and an updated key of African Allocreadium. Folia Parasitologica 68, 013. https://doi.org/10.14411/fp.2021.013CrossRefGoogle Scholar
Huelsenbeck, JP, Ronquist, F, Nielsen, R, and Bollback, JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 23102314. https://doi.org/10.1126/science.1065889CrossRefGoogle ScholarPubMed
Koval, VP (1957) Trematodes of the genus Allocreadium Looss, 1900 in fishes of freshwater ponds of UkSSR. Naukovi zapiski Kiivs′kogo Universitetu, v. XVI, XX. Biologichniy zbirnik 14, 201212. [In Ukrainian]Google Scholar
Kumar, S, Stecher, G, Li, M, Knyaz, C, and Tamura, K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6), 15471549. https://doi.org/10.1093/molbev/msy096CrossRefGoogle ScholarPubMed
Lockyer, AE, Olson, PD, and Littlewood, DTJ (2003) Utility of complete large and small subunit rRNA genes in resolving the phylogeny of the Neodermata (Platyhelminthes): Implications and a review of the cercomer theory. Biological Journal of Linnean Society of London 78, 155171. https://doi.org/10.1046/j.1095-8312.2003.00141.xCrossRefGoogle Scholar
Miura, F, Uematsu, C, Sakaki, Y, and Ito, T (2005) A novel strategy to design highly specific PCR primers based on the stability and uniqueness of 3′-end subsequences. Bioinformatics 21, 43634370.CrossRefGoogle ScholarPubMed
Petkevičiūtė, R, Stunzenas, V, Staneviciute, G, and Sokolov, SG (2010) Comparison of the developmental stages of some European allocreadiid trematode species and a clarification of their life-cycles based on ITS2 and 28S sequences. Systematic Parasitology 76(3), 169178.CrossRefGoogle Scholar
Petkevičiūtė, R, Stunžėnas, V, and Stanevičiūtė, G (2012) Clarification of the systematic position of Cercariaeum crassum Wesenberg-Lund, 1934 (Digenea), based on karyological analysis and DNA sequences. Journal of Helminthology 86(3), 293301. https://doi.org/10.1017/S0022149X11000393CrossRefGoogle ScholarPubMed
Petkevičiūtė, R, Stunžėnas, V, and Stanevičiūtė, G (2023) Hidden diversity in European Allocreadium spp. (Trematoda, Allocreadiidae) and the discovery of the adult stage of Cercariaeum crassum Wesenberg-Lund, 1934. Diversity 15(5), 645. https://doi.org/10.3390/d15050645CrossRefGoogle Scholar
Petkevičiūtė, R, Stunžėnas, V, Zhokhov, AE, Poddubnaya, LG, and Stanevičiūtė, G (2018) Diversity and phylogenetic relationships of European species of Crepidostomum Braun, 1900 (Trematoda: Allocreadiidae) based on rDNA, with special reference to Crepidostomum oschmarini Zhokhov & Pugacheva, 1998. Parasites & Vectors 11, 530. https://doi.org/10.1186/s13071-018-3095-yCrossRefGoogle ScholarPubMed
Rochat, EC, Paterson, RA, Blasco-Costa, I, Power, M, Adams, CE, Greer, R, and Knudsen, R (2022) Temporal stability of polymorphic Arctic charr parasite communities reflects sustained divergent trophic niches. Ecology and Evolution 12(11), e9460. https://doi.org/10.1002/ece3.9460CrossRefGoogle ScholarPubMed
Roitman, VA (1963) New species of trematodes of fishes of the Amur basin. Trudy Gelmintologicheskoi Laboratorii 13, 303312. [In Russian]Google Scholar
Shimazu, T (2017) Digeneans parasitic in freshwater fishes (Osteichthyes) of Japan XII. A list of the papers of the series, a key to the families in Japan, a parasite-host list, a host-parasite list, Addenda, and Errata. Bulletin of the National Museum of Nature and Science Series A 43, 129143.Google Scholar
Sokolov, SG, Khasano, FK, and Lebedeva, DI (2023) Phylogenetic assessment of some Palearctic Allocreadium spp. (Trematoda, Gorgoderoidea: Allocreadiidae). Parasitology Research 122(8), 19231933. https://doi.org/10.1007/s00436-023-07893-5CrossRefGoogle ScholarPubMed
Solórzano-García, B, Hernández-Mena, DI, Choudhury, A, and Pérez-Ponce de León, G (2024) The complete mitochondrial genome of 3 species of allocreadiids (Digenea, Allocreadiidae): Characterization and phylogenetic position within the order Plagiorchiida. Parasitology 151(3), 309318. https://doi.org/10.1017/S0031182024000064CrossRefGoogle ScholarPubMed
Truett, GE (2006) Preparation of genomic DNA from animal tissues. In Kieleczawa, J (ed), The DNA Book: Protocols and Procedures for the Modern Molecular Biology Laboratory. Sudbury: Jones and Bartlett Publisher, 3346.Google Scholar
Vainutis, KS (2020) Allocreadium khankaiensis sp. nov. and Allocreadium hemibarbi Roitman, 1963 (Trematoda: Allocreadiidae) from the Russian Far East: Morphological, molecular, and phylogenetic studies. Parasitology International 76, 102102. https://doi.org/10.1016/j.parint.2020.102102CrossRefGoogle ScholarPubMed
Vainutis, KS, Voronova, AN, and Urabe, M (2021) Systematics of Crepidostomum species from the Russian Far East and northern Japan, with description of a new species and validation of the genus Stephanophiala. Parasitology International 84, 102412. https://doi.org/10.1016/j.parint.2021.102412CrossRefGoogle ScholarPubMed
Vainutis, KS, Voronova, AN, Urabe, M, and Kazarin, VM (2023) Integrative approach for discovering of the new species within the genus Allocreadium Looss, 1900 (Trematoda: Allocreadiidae) and framing of biogeographical hypotheses for the genus. Systematic Parasitology 100(2), 189213. https://doi.org/10.1007/s11230-022-10081-1CrossRefGoogle ScholarPubMed
World Register of Marine Species (2024) Allocreadium Looss, 1900. Available at https://www.marinespecies.org/aphia.php?p=taxdetails&id=344922 (accessed January 18, 2024).Google Scholar
Supplementary material: File

Vainutis supplementary material 1

Vainutis supplementary material
Download Vainutis supplementary material 1(File)
File 59.9 KB
Supplementary material: File

Vainutis supplementary material 2

Vainutis supplementary material
Download Vainutis supplementary material 2(File)
File 64.5 KB