Hostname: page-component-669899f699-2mbcq Total loading time: 0 Render date: 2025-05-05T19:48:50.524Z Has data issue: false hasContentIssue false

Use of nonnative, invasive tree logs for commercial mushroom production

Published online by Cambridge University Press:  20 May 2024

Kristen E. Bowers*
Affiliation:
Biological Science Technician, USDA-ARS Center for Medical, Agricultural, and Veterinary Entomology, Tallahassee, FL, USA Current: Research Scientist, Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM, USA
Stephen D. Hight
Affiliation:
Research Entomologist Emeritus, USDA-ARS Center for Medical, Agricultural, and Veterinary Entomology, Tallahassee, FL, USA Current: Insects and Associates, LLC, Pittsburg, KS, USA
Neil W. Miller
Affiliation:
Biological Science Technician, USDA-ARS Center for Medical, Agricultural, and Veterinary Entomology, Tallahassee, FL, USA
Alexander M. Gaffke
Affiliation:
Research Entomologist, USDA-ARS Center for Medical, Agricultural, and Veterinary Entomology, Tallahassee, FL, USA
Jennifer E. Taylor
Affiliation:
Associate Professor, Florida A&M University, Tallahassee, FL, USA
*
Corresponding author: Kristen E. Bowers; Email: [email protected]

Abstract

Removal and disposal of nonnative trees is expensive and time-consuming. Using these nonnative trees as a substrate to produce edible mushrooms could diversify farming operations and provide additional income to small-scale farmers. This research compared the production of shiitake mushrooms (Lentinula edodes) on nonnative tree logs to shiitake mushroom production on native oak (Quercus L.) logs, which are the traditional substrate. In a 2-yr study, we evaluated nonnative tree species as alternate substrates for growing shiitake mushrooms at farms in northern Florida and southern Georgia. A mix of native Quercus spp. and nonnative trees was targeted for removal on participating farms. Five nonnative tree species were initially tested for their ability to produce edible mushrooms, either shiitake or oyster (Pleurotus ostreatus var. florida). Of the nonnative trees we tested: Chinaberry (Melia azedarach L.), Chinese tallowtree [Triadica sebifera (L.) Small], silktree (Albizia julibrissin Durazz.), earleaf acacia (Acacia auriculiformis A. Cunn. ex Benth.), and paperbark tree [Melaleuca quinquenervia (Cav.) S.F. Blake], only T. sebifera produced shiitake mushrooms, and none produced native Florida oyster mushrooms. In on-farm trials, Quercus spp. logs produced more total mushrooms and more mushrooms per log and had a higher total mushroom yield per log. However, mushrooms produced on T. sebifera logs had higher mean weight per mushroom. Edible fungi can be used to recycle invasive, nonnative T. sebifera and transform their biomass from waste into an income-producing resource.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Weed Science Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Stephen F. Enloe, University of Florida

References

Ahmad, I, Arif, M, Mimi, X, Zhang, J, Ding, Y, Lyu, F (2023) Therapeutic values and nutraceutical properties of shiitake mushroom (Lentinula edodes): a review. Trends Food Sci Technol 134:123135 Google Scholar
Baran, J (2010) Field Study of a Technique for Combining Low-Cost, Herbicide-Free Control of Woody Invasives, in Particular Ailanthus altissima, with Production of Edible Mushrooms. Lincoln: University of Nebraska, NCR-SARE Farmer Rancher Grant Program Final Report FNC07-670-07. 17 pGoogle Scholar
[EDDMapS] Early Detection & Distribution Mapping System (2023) Home page. University of Georgia Center for Invasive Species and Ecosystem Health. http://www.eddmaps.org. Accessed: April 4, 2024Google Scholar
Enloe, S, Loewenstein, N, Cain, D (2019) Cut Stump Herbicide Treatments for Invasive Plant Control. Alabama Cooperative Extension System. https://www.aces.edu/blog/topics/forestry/cut-stump-herbicide-treatments-for-invasive-plant-control/#:∼:text=Cut%20stump%20herbicide%20treatment%20is,normally%20occur%20after%20cutting%20alone. Accessed: April 4, 2024Google Scholar
Field and Forest Products (2017) Specialty Mushrooms, Spawn and Supply Catalog. http://www.fieldforest.net. Accessed: March 23, 2023Google Scholar
Frey, GE (2020) The Basics of Hardwood Log Shiitake Mushroom Production and Marketing. Virginia Cooperative Extension. https://www.pubs.ext.vt.edu/ANR/ANR-102/ANR-102.html. Accessed: April 4, 2024Google Scholar
Frey, GE, Durmus, T, Sills, EO, Isik, F, Comer, MM (2020) Potential alternative tree species as substrates for forest farming of log-grown shiitake mushrooms in the southeastern United States. HortTechnol. 30:741744 Google Scholar
Fungi Perfecti (2017) From the Forest, to Our Farm, to You! http://www.fungi.com. Accessed March 23, 2023Google Scholar
Gabriel, S (2022) Economic Report for Log-Grown Shiitake Mushrooms (2019). https://smallfarms.cornell.edu/2022/02/economic-report-for-log-grown-shiitake-mushrooms-2019. Accessed: March 23, 2023Google Scholar
Hiatt, D, Serbesoff-King, K, Lieurance, D, Gordon, DR, Flory, SL (2019) Allocation of invasive plant management expenditures for conservation: lessons from Florida, USA. Conserv Sci Pract 1:e51 Google Scholar
Kimmons, TE, Phillips, M, Brauer, D (2003) Small farm scale production of aerobic compost from hardwoods predigested by Lentinula edodes . J Sustain Agric 23:109123 Google Scholar
McCormick, CM (2005) Chinese Tallow Management Plan for Florida. Gainesville, FL: Florida Exotic Pest Plant Council Chinese Tallow Task Force. 83 p. https://bugwoodcloud.org/CDN/fleppc/publications/Tallow_Plan.pdf. Accessed: August 31, 2023Google Scholar
Miami-Dade County (2023) Miami-Dade County Regulatory & Economic Resources. Prohibited Plants. https://www.miamidade.gov/environment/prohibited-plants.asp. Accessed: August 31, 2023Google Scholar
Morgan, K (2023) Specialty Mushrooms Are Booming—Including in Home Gardens. Washington Post, April 13. https://www.washingtonpost.com/home/2023/04/13/edible-mushrooms-grow-home. Accessed: April 21, 2024Google Scholar
O’Donnell, L, Moulton, LL, Stack, J (2019) Turning an invasive hardwood into an asset: inoculating Ligustrum lucidum logs with a medicinal mushroom, Trametes versicolor, accelerates wood decomposition under field conditions. Invasive Plant Sci Manag 12:142149 Google Scholar
Palm Beach County (2023) Palm Beach County Environmental Resources Management. Prohibited Plants. https://discover.pbcgov.org/erm/Pages/Prohibited-Plants.aspx. Accessed: August 31, 2023Google Scholar
Rhodes, CJ (2014) Mycoremediation (bioremediation with fungi)—growing mushrooms to clean the earth. Chem Speciation Bioavailability 26:196198 Google Scholar
Richardson, DM, Rejmánek, M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788809 Google Scholar
Stamets, P (2000) Growing Gourmet and Medicinal Mushrooms. 3rd ed. Berkeley, CA: Ten Speed Press. 592 pGoogle Scholar
Stamets, P (2005) Mycelium Running: How Mushrooms Can Help Save The World. Berkeley, CA: Ten Speed Press. 356 pGoogle Scholar
Stamets, P, Chilton, JS (1983) The Mushroom Cultivator: A Practical Guide to Growing Mushrooms at Home. Olympia, WA: Agarikon Press. 438 pGoogle Scholar
[UF/IFAS/CAIP] University of Florida Institute for Food and Agricultural Sciences, Center for Aquatic and Invasive Plants (2023) Plant Directory. https://plants.ifas.ufl.edu/plant-directory. Accessed: February 12, 2023Google Scholar
[USDA-NASS] U.S. Department of Agriculture–National Agricultural Statistical Service (2022) Mushrooms. https://www.nass.usda.gov/Publications/Todays_Reports/reports/mush0822.pdf. Accessed: August 31, 2023Google Scholar
van Wilgen, BW, Richardson, DM (2014) Challenges and trade-offs in the management of invasive alien trees. Biol Invasions 16:721734 Google Scholar