Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-02T19:34:22.307Z Has data issue: false hasContentIssue false

Prime representations in the Hernandez–Leclerc category: classical decompositions

Published online by Cambridge University Press:  27 October 2023

Leon Barth
Affiliation:
Faculty of Mathematics, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany e-mail: [email protected]
Deniz Kus*
Affiliation:
Faculty of Mathematics, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany e-mail: [email protected]

Abstract

We use the dual functional realization of loop algebras to study the prime irreducible objects in the Hernandez–Leclerc (HL) category for the quantum affine algebra associated with $\mathfrak {sl}_{n+1}$. When the HL category is realized as a monoidal categorification of a cluster algebra (Hernandez and Leclerc (2010, Duke Mathematical Journal 154, 265–341); Hernandez and Leclerc (2013, Symmetries, integrable systems and representations, 175–193)), these representations correspond precisely to the cluster variables and the frozen variables are minimal affinizations. For any height function, we determine the classical decomposition of these representations with respect to the Hopf subalgebra $\mathbf {U}_q(\mathfrak {sl}_{n+1})$ and describe the graded multiplicities of their graded limits in terms of lattice points of convex polytopes. Combined with Brito, Chari, and Moura (2018, Journal of the Institute of Mathematics of Jussieu 17, 75–105), we obtain the graded decomposition of stable prime Demazure modules in level two integrable highest weight representations of the corresponding affine Lie algebra.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

D.K. was partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) (Grant No. 446246717).

References

Ardonne, E. and Kedem, R., Fusion products of Kirillov–Reshetikhin modules and fermionic multiplicity formulas . J. Algebra 308(2007), no. 1, 270294.CrossRefGoogle Scholar
Ardonne, E., Kedem, R., and Stone, M., Fermionic characters and arbitrary highest-weight integrable ${\hat{\mathfrak{sl}}}_{r+1}$ -modules . Commun. Math. Phys. 264(2006), no. 2, pp. 427464.CrossRefGoogle Scholar
Barth, L. and Kus, D., Graded decompositions of fusion products in rank 2 . Kyoto J. Math. 62(2022), no. 3, 547576.CrossRefGoogle Scholar
Biswal, R., Chari, V., Shereen, P., and Wand, J., Macdonald polynomials and level two Demazure modules for affine ${\mathfrak{sl}}_{n+1}$ . J. Algebra 575(2021), 159191.CrossRefGoogle Scholar
Biswal, R. and Kus, D., A combinatorial formula for graded multiplicities in excellent filtrations . Transform. Groups 26(2021), no. 1, 81114.CrossRefGoogle Scholar
Brito, M. and Chari, V., Tensor products and $q$ -characters of HL-modules and monoidal categorifications . J. Éc. Polytech. Math. 6(2019), 581619.CrossRefGoogle Scholar
Brito, M., Chari, V., and Moura, A., Demazure modules of level two and prime representations of quantum affine ${\mathfrak{sl}}_{n+1}$ . J. Inst. Math. Jussieu 17(2018), no. 1, 75105.CrossRefGoogle Scholar
Chari, V. and Moura, A., The restricted Kirillov–Reshetikhin modules for the current and twisted current algebras . Commun. Math. Phys. 266(2006), no. 2, 431454.CrossRefGoogle Scholar
Chari, V. and Pressley, A., Quantum affine algebras . Commun. Math. Phys. 142(1991), no. 2, 261283.CrossRefGoogle Scholar
Chari, V. and Pressley, A., Quantum affine algebras and their representations . In: Representations of groups (Banff, AB, 1994), Canadian Mathematical Society Conference Proceedings, 16, American Mathematical Society, Providence, RI, 1995, pp. 5978.Google Scholar
Chari, V. and Pressley, A., Weyl modules for classical and quantum affine algebras . Represent. Theory 5(2001), 191223 (electronic).CrossRefGoogle Scholar
Chari, V. and Venkatesh, R., Demazure modules, fusion products and $Q$ -systems . Commun. Math. Phys. 333(2015), no. 2, 799830.CrossRefGoogle Scholar
Di Francesco, P. and Kedem, R.. Proof of the combinatorial Kirillov–Reshetikhin conjecture . Int. Math. Res. Not. IMRN 7(2008), Article no. rnn006, 57 pp.Google Scholar
Feigin, B., Kedem, R., Loktev, S., Miwa, T., and Mukhin, E., Combinatorics of the ${\hat{\mathfrak{sl}}}_2$ coinvariants: dual functional realization and recursion . Compos. Math. 134(2002), no. 2, 193241.CrossRefGoogle Scholar
Fourier, G., Martins, V., and Moura, A., On truncated Weyl modules . Comm. Algebra 47(2019), no. 3, 11251146.CrossRefGoogle Scholar
Hernandez, D., The Kirillov–Reshetikhin conjecture and solutions of $T$ -systems . J. Reine Angew. Math. 596(2006), 6387.Google Scholar
Hernandez, D., On minimal affinizations of representations of quantum groups . Commun. Math. Phys. 276(2007), no. 1, 221259.CrossRefGoogle Scholar
Hernandez, D. and Leclerc, B., Cluster algebras and quantum affine algebras . Duke Math. J. 154(2010), no. 2, 265341.CrossRefGoogle Scholar
Hernandez, D. and Leclerc, B., Monoidal categorifications of cluster algebras of type A and D . In: Symmetries, integrable systems and representations, Springer Proceedings in Mathematics & Statistics, 40, Springer, Heidelberg, 2013, 175193.CrossRefGoogle Scholar
Humphreys, J. E., Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, 9, Springer, Berlin, 1980.Google Scholar
Kedem, R., A pentagon of identities, graded tensor products, and the Kirillov–Reshetikhin conjecture . In: New trends in quantum integrable systems, World Scientific Publications, Hackensack, NJ, 2011, 173193.Google Scholar
Kontsevich, M. and Soibelman, Y., Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants . Commun. Number Theory Phys. 5(2011), no. 2, 231352.CrossRefGoogle Scholar
Kus, D. and Littelmann, P., Fusion products and toroidal algebras . Pacific J. Math. 278(2015), no. 2, 427445.CrossRefGoogle Scholar
Kus, D. and Venkatesh, R., Twisted Demazure modules, fusion product decomposition and twisted $Q$ -systems . Represent. Theory 20(2016), 94127.CrossRefGoogle Scholar
Kus, D. and Venkatesh, R., Simplified presentations and embeddings of Demazure modules. Israel J. Math. (2021), to appear, arXiv:2112.14830.Google Scholar
Lusztig, G., Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010, reprint of the 1994 edition.Google Scholar
Nakajima, H., t-analogs of q-characters of quantum affine algebras of type An, Dn . In: Combinatorial and geometric representation theory (Seoul, 2001), Contemporary Mathematics, 325, American Mathematical Society, Providence, RI, 2003, pp. 141160.CrossRefGoogle Scholar
Naoi, K., Tensor products of Kirillov–Reshetikhin modules and fusion products . Int. Math. Res. Not. IMRN 18(2017), 56675709.Google Scholar
Stoyanovskiĭ, A. V. and Feĭgin, B. L., Functional models of the representations of current algebras, and semi-infinite Schubert cells . Funktsional. Anal. i Prilozhen. 28(1994), no. 1, 6890, 96.Google Scholar