Published online by Cambridge University Press: 05 February 2024
The preference for particles to accumulate at specific regions in the near-wall part is a widely observed phenomenon in wall-bounded turbulence. Unlike small particles more frequently found in low-speed streaks, finite-size particles can accumulate in either low-speed or high-speed streaks. However, mechanisms and influencing factors leading to the different preferential concentration locations still need to be clarified. The present study conducts particle-resolved direct numerical simulations of particle-laden turbulent channel flows to provide a better understanding of this seemingly puzzling behaviour of preferential accumulation. These simulations cover different particle-to-fluid density ratios, particle volume fractions, particle sizes and degrees of sedimentation intensity. We find that the large particle size is the crucial factor that results in particles accumulating in high-speed streaks. Large particles not only are difficult to be conveyed by the quasi-streamwise vortices to low-speed streaks but also can escape from the near-wall region before moving spanwisely out from high-speed streaks. The sedimentation effect allows particles to gather closer to the channel wall and stay longer in the near-wall regions, reinforcing the sweeping mechanism of quasi-streamwise vortices that transport particles from high- to low-speed streaks. As a result, sedimenting particles tend to accumulate in the low-speed streaks.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.