Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T08:57:37.474Z Has data issue: false hasContentIssue false

Single and multiple humanoid path planning using Hill valley approach applied to gravitational drift in Gravitational search algorithm

Published online by Cambridge University Press:  31 August 2023

Vikas*
Affiliation:
Robotics Laboratory, Mechanical Engineering Department, National Institute of Technology, Rourkela, Odisha, India
Dayal R. Parhi
Affiliation:
Robotics Laboratory, Mechanical Engineering Department, National Institute of Technology, Rourkela, Odisha, India
*
Corresponding author: Vikas; Email: [email protected]

Abstract

In this paper, the Hill Valley (HV) approach is applied to the drifting masses or agents in the basic Gravitational Search Algorithm (GSA) for the path planning of humanoid robots. The drift in lighter masses toward the heavier mass creates a localized area, where the probability of obtaining a globally optimal solution is very high. So, the present work is focused on exploiting the area to tackle local optima and provide the best steering angle for the humanoids to navigate. The HV approach is applied to the basic GSA model, at the later stages, to improve the overall computational time and cost. The robustness of the proposed controller was tested in both simulation and experimental environments and compared with the previous research. The results obtained from the proposed controller showed a significant improvement in the overall path length and time taken. Path smoothness was also given equal importance during path planning to ensure stability. The multi-robot navigational scheme was performed using the Dining Philosopher’s model to avoid dynamic collision among the humanoids. The percentage deviation in the results was within the acceptable limits. To further check the effectiveness of the proposed technique, the proposed approach was compared with the vision-based navigation in danger space.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rashedi, E., Nezamabadi-Pour, H. and Saryazdi, S., “GSA: A gravitational search,” Inf. Sci. 179(13), 22322248 (2009). doi: 10.1016/j.ins.2009.03.004.CrossRefGoogle Scholar
Purcaru, C., Precup, R. E., Iercan, D., Fedorovici, L. O., David, R. C. and Dragan, F., “Optimal robot path planning using gravitational search algorithm,” Int. J. Artif. Intell. 10(13), 120 (2013).Google Scholar
Sahoo, G., “A review on gravitational search algorithm and its applications to data clustering & classification,” Int. J. Intell. Syst. Appl. 6(6), 7993 (2014). doi: 10.5815/ijisa.2014.06.09.Google Scholar
Gia, K., Mokhlis, H., Illias, H. A., Aman, M. M. and Jamian, J. J., “Gravitational search algorithm and selection approach for optimal distribution network configuration based on daily photovoltaic and loading variation,” J. Appl. Math. 2015, 111 (2015). doi: 10.1155/2015/894758.Google Scholar
Yadav, A. and Deep, K., “Constrained optimization using gravitational search algorithm,” Natl. Acad. Sci. Lett. 36(5), 527534 (2013). doi: 10.1007/s40009-013-0165-8.CrossRefGoogle Scholar
Zibanezhad, B., Zamanifar, K., Sadjady, R. S. and Rastegari, Y., “Applying gravitational search algorithm in the QoS-based Web service selection problem,” J. Zhejiang Univ. Sci. C 12(9), 730742 (2011). doi: 10.1631/jzus.C1000305.CrossRefGoogle Scholar
Rashedi, E., Nezamabadi-Pour, H. and Saryazdi, S., “Filter modeling using gravitational search algorithm,” Eng. Appl. Artif. Intell. 24(1), 117122 (2011). doi: 10.1016/j.engappai.2010.05.007.CrossRefGoogle Scholar
Ramamoorthy, A. and Ramachandran, R., “Reactive Power Optimization Using GSA,” In: 2014 6th IEEE Power India International Conference (PIICON) (IEEE, 2014) pp. 14. doi: 10.1109/POWERI.2014.7117680.Google Scholar
Parhi, D. R., “Chaos-based optimal path planning of humanoid robot using hybridized regression-gravity search algorithm in static and dynamic terrains,” Appl. Soft Comput. 140, 110236 (2023). doi: 10.1016/j.asoc.2023.110236.Google Scholar
Kumar, P. B. and Parhi, D. R., “Intelligent hybridization of regression technique with genetic algorithm for navigation of humanoids in complex environments,” Robotica 38(4), 565581 (2020). doi: 10.1017/S0263574719000869.CrossRefGoogle Scholar
Parhi, D. R. and Kashyap, A. K., “Humanoid robot path planning using memory-based gravity search algorithm and enhanced differential evolution approach in a complex environment,” Expert Syst. Appl. 215, 119423 (2023). doi: 10.1016/j.eswa.2022.119423.Google Scholar
Sun, G. and Zhang, A., “A Hybrid Genetic Algorithm and Gravitational Search Algorithm for Image Segmentation Using Multilevel Thresholding,” In: Iberian Conference on Pattern Recognition and Image (Springer, Berlin/Heidelberg, 2013) pp. 707714. doi: 10.1007/978-3-642-38628-2_84.Google Scholar
Mirjalili, S., Wang, G. G. and Coelho, L. D. S., “Binary optimization using hybrid particle swarm optimization and gravitational search algorithm,” Neural Comput. Appl. 25(6), 14231435 (2014). doi: 10.1007/s00521-014-1629-6.CrossRefGoogle Scholar
Mallick, S., Ghoshal, S. P., Acharjee, P. and Thakur, S. S., “Optimal static state estimation using improved particle swarm optimization and gravitational search algorithm,” Int. J. Electr. Power Energy Syst. 52, 254265 (2013). doi: 10.1016/j.ijepes.2013.03.035.CrossRefGoogle Scholar
Gonzalez, B., Valdez, F., Melin, P. and Prado-Arechiga, G., “Fuzzy logic in the gravitational search algorithm for the optimization of modular neural networks in pattern recognition,” Expert Syst. Appl. 42(14), 58395847 (2015). doi: 10.1016/j.eswa.2015.03.034.CrossRefGoogle Scholar
Ezzat, D. and Ella, H. A., “GSA-DenseNet121-COVID-19: A hybrid deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization algorithm,” arXiv preprint arXiv:2004.05084 (2020). doi: 10.48550/arXiv.2004.05084.Google Scholar
Haghbayan, P., Nezamabadi-Pour, H. and Kamyab, S., A niche GSA method with nearest neighbor scheme for multimodal optimization,” Swarm Evol. Comput. 35, 7892 (2017).CrossRefGoogle Scholar
Shen, D., Jiang, T., Chen, W., Shi, Q. and Gao, S., “Improved Chaotic Gravitational Search Algorithms for Global Optimization,” In: 2015 IEEE Congress on Evolutionary Computation (CEC) (IEEE, 2015) pp. 12201226. doi: 10.1109/CEC.2015.7257028.CrossRefGoogle Scholar
Sahu, R. K., Panda, S. and Padhan, S., “Optimal gravitational search algorithm for automatic generation control of interconnected power systems. Ain shams engineering,” Ain Shams Eng. J. 5(3), 721733 (2014). doi: 10.1016/j.asej.2014.02.004.CrossRefGoogle Scholar
Eldos, T. and Al Qasim, R., “On the performance of the gravitational search algorithm.,” Int. J. Adv. Comput. Sci. Appl. 4(8), 7478 (2013). doi: 10.14569/IJACSA.2013.040811.Google Scholar
Wang, Y., Gao, S., Yu, Y., Wang, Z., Cheng, J. and Yuki, T., “A gravitational search algorithm with chaotic neural oscillators,” IEEE Access 8, 2593825948 (2020). doi: 10.1109/ACCESS.2020.2971505.CrossRefGoogle Scholar
Mittal, H., Pal, R., Kulhari, A. and Saraswat, M., “Chaotic Kbest Gravitational Search Algorithm (CKGSA),” In: 2016 Ninth International Conference on Contemporary Computing (IC3) (IEEE, 2016) pp. 16. doi: 10.1109/IC3.2016.7880252,Google Scholar
Sieb, T. S., Singh, A., Guidos, L. and Hashim, H. A., “FLC Tuned with Gravitational Search Algorithm for Nonlinear Pose Filter,” In: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (2020) pp. 28642869. doi: 10.1109/SMC42975.2020.9283387.CrossRefGoogle Scholar
Pelusi, D., Mascella, R. and Tallini, L., “A fuzzy gravitational search algorithm to design optimal IIR filters,” Energies 11(4), 736 (2018). doi: 10.3390/en11040736.CrossRefGoogle Scholar
Kang, K., Bae, C., Yeung, H. W. F. and Chung, Y. Y., “A hybrid gravitational search algorithm with swarm intelligence and deep convolutional feature for object tracking optimization,” Appl. Soft Comput. 66, 319329 (2018). doi: 10.1016/j.asoc.2018.02.037.CrossRefGoogle Scholar
Sahu, R. K., Panda, S. and Padhan, S., “A novel hybrid gravitational search and pattern search algorithm for load frequency control of non-linear power system,” Appl. Soft Comput. 29, 310327 (2015). doi: 10.1016/j.asoc.2015.01.020.CrossRefGoogle Scholar
Wang, J., Liu, D. and Shang, H., “Hill Valley Function Based Niching Particle Swarm Optimization for Multi-modal Functions,” In: 2009 International Conference on Artificial Intelligence and Computational Intelligence, vol. 1 (IEEE, 2009) pp. 139144. doi: 10.1109/AICI.2009.250.CrossRefGoogle Scholar
Maree, S. C., Alderliesten, T. and Bosman, P. A., “Real-Valued Evolutionary Multi-modal Multi-objective Optimization by Hill-Valley Clustering,” In: Proceedings of the Genetic and Evolutionary Computation Conference (2019) pp. 568576. doi: 10.48550/arXiv.2010.14998.CrossRefGoogle Scholar
Ellabaan, M. M. and Ong, Y. S., “Valley-Adaptive Clearing Scheme for Multi-modal Optimization Evolutionary Search,” In: 2009 Ninth International Conference on Intelligent Systems Design and Applications (IEEE, 2009) pp. 16. doi: 10.1109/ISDA.2009.115.Google Scholar
Zhang, J., Huang, D. S., Lok, T. M. and Lyu, M. R., “A novel adaptive sequential niche technique for multi-modal function optimization,” Neurocomputing 69(16-18), 23962401 (2006). doi: 10.1016/j.neucom.2006.02.016.CrossRefGoogle Scholar
SoftBank Robotics, NAO the Humanoid and Programmable Robot (n.d.). Retrieved May 26, 2022, from https://www.softbankrobotics.com/emea/en/nao Google Scholar
Das, P. K., Behera, H. S., Das, S., Tripathy, H. K., Panigrahi, B. K. and Pradhan, S. K., “A hybrid improved PSO-DV algorithm for multi-robot path planning in a clutter environment,” Neurocomputing 207, 735753 (2016). doi: 10.1016/J.NEUCOM.2016.05.057.CrossRefGoogle Scholar
Gao, S., Vairappan, C., Wang, Y., Cao, Q. and Tang, Z., “Gravitational search algorithm combined with chaos for unconstrained numerical optimization,” Appl. Math. Comput. 231, 4862 (2014). doi: 10.1016/j.amc.2013.12.175.Google Scholar
Ursem, R. K., “Multinational Evolutionary Algorithms,” In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 3 (1999) pp. 16331640. doi: 10.1109/CEC.1999.785470.CrossRefGoogle Scholar
Dijkstra, E. W., “Hierarchical Ordering of Sequential Processes,” In: The Origin of Concurrent Programming (Springer, New York, 1971) pp. 198227. doi: 10.1007/BF00289519.CrossRefGoogle Scholar
Kashyap, A. K. and Parhi, D. R., “Dynamic walking of multi-humanoid robots using BFGS Quasi-Newton method aided artificial potential field approach for uneven terrain,” Soft Comput. 27(9), 58935910 (2023). doi: 10.1007/s00500-022-07606-7.CrossRefGoogle Scholar
Liu, J., Yang, J., Liu, H., Tian, X. and Gao, M., “An improved ant colony algorithm for robot path planning,” Soft Comput. 21(19), 58295839 (2017). doi: 10.1007/s00500-016-2161-7.CrossRefGoogle Scholar
Qu, H., Xing, K. and Alexander, T., “An improved genetic algorithm with co-evolutionary strategy for global path planning of multiple mobile robots,” Neurocomputing 120, 509517 (2013). doi: 10.1016/j.neucom.2013.04.020.CrossRefGoogle Scholar
Jahanshahi, H., Jafarzadeh, M., Sari, N. N., Pham, V. T., Huynh, V. V. and Nguyen, X. Q., “Robot motion planning in an unknown environment with danger space,” Electronics 8(2), 201 (2019). doi: 10.3390/electronics8020201.CrossRefGoogle Scholar