Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T22:23:47.892Z Has data issue: false hasContentIssue false

A PROOF OF HIRSCHHORN’S CONJECTURE ON $2^n$-DISSECTION OF EULER’S PRODUCT

Published online by Cambridge University Press:  08 October 2024

BIPUL KUMAR SARMAH*
Affiliation:
Department of Mathematical Sciences, Tezpur University, Napaam 784028, Sonitpur, Assam, India
SATYAJIT GAYAN
Affiliation:
Department of Mathematical Sciences, Tezpur University, Napaam 784028, Sonitpur, Assam, India e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Using properties of Ramanujan’s theta functions, we give an elementary proof of Hirschhorn’s conjecture on $2^n$-dissection of Euler’s product $E(q):=(q;q)_\infty $.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

For any complex number a, we define

$$ \begin{align*} \displaystyle(a;q)_k:=\prod_{n=1}^{k}(1-aq^{n-1}) \end{align*} $$

and

$$ \begin{align*} \displaystyle(a;q)_\infty := \lim_{k\rightarrow\infty}(a;q)_k = \prod_{n=1}^{\infty}(1-aq^{n-1}),\quad |q|<1. \end{align*} $$

We set $E(q):=(q;q)_\infty =\prod _{n=1}^{\infty }(1-q^n)$ ; $E(q)$ is known as Euler’s product. We can view $E(q)$ as a particular case of Ramanujan’s theta function (see [Reference Berndt1, page 34]): that is,

$$ \begin{align*} f(a,b):=\displaystyle\sum_{n=-\infty}^{\infty}a^{n(n+1)/2}b^{n(n-1)/2},\quad|ab|<1. \end{align*} $$

Jacobi’s triple product identity (see [Reference Hirschhorn5, page 5]) is

$$ \begin{align*} \sum_{n=-\infty}^{\infty}q^{n^2}z^n=(-qz;q^2)_\infty(-q/z;q^2)_\infty(q^2;q^2)_\infty,\quad|q|<1. \end{align*} $$

Replacing $qz$ by a and $q/z$ by b in Jacobi’s triple product identity, yields

$$ \begin{align*} f(a,b)=(-a;ab)_\infty(-b;ab)_\infty(ab;ab)_\infty. \end{align*} $$

In particular,

$$ \begin{align*} f(-q):=f(-q,-q^2)=(q;q^3)_\infty(q^2;q^3)_\infty(q^3;q^3)_\infty=(q;q)_\infty=E(q). \end{align*} $$

A t-dissection of a power series $A(q)$ is given by $A(q)=\sum _{k=0}^{t-1}q^kA_k(q^t)$ , where the $A_k(q^t)$ are power series in $q^t$ . The $3$ -dissection of $E(q)$ (see [Reference Berndt1, entry 31, page 48]) is

$$ \begin{align*} E(q)=f(-q^{12},-q^{15})-qf(-q^6,-q^{21})-q^2f(-q^3,-q^{24}). \end{align*} $$

We also have

$$ \begin{align*} E(q) &=E(q^{25})\bigg[\frac{f(-q^{10},-q^{15})}{f(-q^{5},-q^{20})} -q-q^2\frac{f(-q^{5},-q^{20})}{f(-q^{10},-q^{15})}\bigg], \\ E(q) &=E(q^{49})\bigg[\frac{f(-q^{14},-q^{35})}{f(-q^{7},-q^{42})} -q\frac{f(-q^{21},-q^{28})} {f(-q^{14},-q^{35})}-q^2+q^3\frac{f(-q^{7},-q^{42})}{f(-q^{21},-q^{28})}\bigg],\\ E(q) &=E(q^{121})\bigg[\frac{f(-q^{44},-q^{77})}{f(-q^{22},-q^{99})} -q\frac{f(-q^{22},-q^{99})}{f(-q^{11},-q^{110})}-q^2\frac{f(-q^{55},-q^{66})}{f(-q^{33},-q^{88})}\notag\\ &\qquad\qquad\quad +q^5+q^7\frac{f(-q^{33},-q^{88})}{f(-q^{44},-q^{77})}-q^{15}\frac{f(-q^{11},-q^{110})}{f(-q^{55},-q^{66})}\bigg], \end{align*} $$

which are, respectively, 5-, 7- and 11- dissections of $E(q)$ (see [Reference Berndt1, pages 82, 303 and 363]. A generalised form of these dissections is given in the following theorem.

Theorem 1.1 [Reference Berndt1, Theorem 12.1, page 274].

Suppose m is a positive integer with $m\equiv 1 \ (\text {mod}~6)$ . If $m=6t+1$ with t positive, then

$$ \begin{align*} \frac{E(q^{1/m})}{E(q^m)} & =(-1)^tq^{(m^2-1)/{(24m)}} +\sum_{k=1}^{(m-1)/2}(-1)^{k+t}q^{(k-t)(3k-3t-1)/(2n)}\frac{f(-q^{2k},-q^{n-2k})}{f(-q^{k},-q^{n-k})}. \end{align*} $$

If $m=6t-1$ with t positive, then

$$ \begin{align*} \frac{E(q^{1/m})}{E(q^m)} =(-1)^tq^{(m^2-1)/{(24m)}} +\sum_{k=1}^{(m-1)/2}(-1)^{k+t}q^{(k-t)(3k-3t+1)/(2n)}\frac{f(-q^{2k},-q^{n-2k})}{f(-q^{k},-q^{n-k})}. \end{align*} $$

Theorem 1.1 was found independently by Ramanathan [Reference Ramanathan7] and Evans [Reference Evans4]. Recently, it was reproved by McLaughlin [Reference McLaughlin6] while establishing some other general dissections involving infinite products.

Hirschhorn [Reference Hirschhorn5, page 332] gave the 2- and 4- dissections of $E(q)$ as

(1.1) $$ \begin{align} \hspace{-5pt}E(q) & =-q(q^4,q^{28};q^{32})_\infty(q^6,q^{10},q^{16};q^{16})_\infty+(q^{12},q^{20};q^{32})_\infty(q^2,q^{14},q^{16};q^{16})_\infty,\\\hspace{-5pt}E(q) & =q^7(q^{8},q^{120};q^{128})_\infty\!(q^{28},q^{36},q^{64};q^{64})_\infty\!-q^2(q^{24},q^{104}; q^{128})_\infty(q^{20},q^{44},q^{64};q^{64})_\infty\notag \end{align} $$
(1.2) $$ \begin{align} E(q) & =q^7(q^{8},q^{120};q^{128})_\infty\!(q^{28},q^{36},q^{64};q^{64})_\infty\!-q^2(q^{24},q^{104}; q^{128})_\infty(q^{20},q^{44},q^{64};q^{64})_\infty,\notag\\ &\quad+(q^{40},q^{88};q^{128})_\infty(q^{12},q^{52},q^{64};q^{64})_\infty-q(q^{56},q^{72}; q^{128})_\infty(q^{4},q^{60},q^{64};q^{64})_\infty, \end{align} $$

where $(a_1, a_2,\ldots ,a_n;q)_\infty :=(a_1;q)_\infty (a_2;q)_\infty \cdots (a_n;q)_\infty $ .

Identity (1.2) was obtained by 4-dissecting the products $(q^6,q^{10},q^{16};q^{16})_\infty $ and $(q^2,q^{14},q^{16};q^{16})_\infty $ in (1.1). Hirschhorn also remarked that we can continue in the same manner and find the 8-dissection, the 16-dissection and so on. He concluded by noting the following conjecture on the $2^n$ -dissection of $E(q)$ .

Conjecture 1.2.

$$ \begin{align*} E(q)&=\sum_{k=1}^{2^n} (-1)^{n+k+1} q^{c_k}(q^{(2k-1)2^{n+1}},q^{2^{2n+3}-(2k-1)2^{n+1}};q^{2^{2n+3}})_\infty\notag\\ &\quad \times (q^{2^{2n+1}+(2k-1)2^{n}},q^{2^{2n+1}-(2k-1)2^{n}},q^{2^{2n+2}};q^{2^{2n+2}})_\infty, \end{align*} $$

where

(1.3) $$ \begin{align} \text{if}~n~ \text{is~ odd},\quad c_k & =P\bigg(\frac{2^{n+1}-1}{3}-(k-1)\bigg), ~ k=1,2,3,\ldots,2^n, \end{align} $$
(1.4) $$ \begin{align} \text{if}~ n~ \text{is~ even},\quad c_k &=P\bigg(-\frac{2^{n+1}-2}{3}+(k-1)\bigg), ~ k=1,2,3,\ldots,2^n, \end{align} $$

and

(1.5) $$ \begin{align} P(n)& =\frac{3n^2-n}{2}. \end{align} $$

Cao [Reference Cao3] discussed product identities for theta functions using integer matrix exact covering systems. In particular, he gave the following result involving the product of two theta functions.

Theorem 1.3 [Reference Cao3, Corollary 2.2].

If $|ab|<1$ and $cd=(ab)^{k_1k_2}$ , where both $k_1$ and $k_2$ are positive integers, then

(1.6) $$ \begin{align} & f(a,b)f(c,d) \notag\\ &\quad =\sum_{r=0}^{k_1+k_2-1}a^{{r(r+1)}/{2}}b^{{r(r-1)}/{2}}f (a^{{(k_1^2+k_1)}/{2}+k_1r}b^{{(k_1^2-k_1)}/{2}+k_1r}d, a^{{(k_1^2-k_1)}/{2}-k_1r}b^{{(k_1^2+k_1)}/{2}-k_1r}c)\notag\\ &\qquad\times f(a^{{(k_2^2+k_2)}/{2}+k_2r}b^{{(k_2^2-k_2)}/{2}+k_2r}c,a^{{(k_2^2-k_2)}/{2}-k_2r}b^{{(k_2^2+k_2)}/{2}-k_2r}d). \end{align} $$

Finally, we give the following version of the quintuple product identity.

Theorem 1.4 (Quintuple product identity [Reference Berndt2, page 19]).

For $a\neq 0$ ,

(1.7) $$ \begin{align} &(-aq;q)_\infty(-a^{-1};q)_\infty(a^2q;q^2)_\infty(a^{-2}q;q^2)_\infty(q;q)_\infty\notag\\ &\quad =(a^3q^2;q^3)_\infty(a^{-3}q;q^3)_\infty(q^3;q^3)_\infty+a^{-1}(a^3q;q^3)_\infty(a^{-3}q^2;q^3)_\infty(q^3;q^3)_\infty\notag\\ &\quad =f(-a^3q^2,-a^{-3}q)+a^{-1}f(-a^3q,-a^{-3}q^2). \end{align} $$

We use (1.6), (1.7) and other properties of Ramanujan’s theta function to prove Conjecture 1.2. In Section 2, we mention some preliminary results involving Ramanujan’s theta function and the pentagonal numbers $P(n)$ . In Section 3, we provide the proof of Conjecture 1.2.

2 Preliminaries

Lemma 2.1. If $ab=cd$ , then

(2.1) $$ \begin{align} f(a,b)f(c,d) & =f(ac,bd)f(ad,bc)+af\bigg(\frac{b}{c},\frac{c}{b}abcd\bigg)f\bigg(\frac{b}{d},\frac{d}{b}abcd\bigg). \end{align} $$

Proof. Set $k_1=k_2=1$ in (1.6).

Lemma 2.2 [Reference Berndt1, Entry 18, page 34].

For any integer n,

(2.2) $$ \begin{align} f(a,b)&=a^{n(n+1)/2}b^{n(n-1)/2}f(a(ab)^n,b(ab)^{-n}). \end{align} $$

Lemma 2.3. We have

(2.3) $$ \begin{align} f(a,b)=af(a^2b,a^{-1}). \end{align} $$

Proof. Set $n=1$ in (2.2).

Lemma 2.4. Let $P(n)$ be as in (1.5). For positive integers n and k,

(2.4) $$ \begin{align} P(2^{n+1}+k-1)-P(k-1)&=3\times2^{2n+1}+2^n(6k-7). \end{align} $$

Proof. We have

(2.5) $$ \begin{align} P(s)-P(t) & =\tfrac{1}{2}(s-t)(3s+3t-1). \end{align} $$

Replacing s and t by $2^{n+1}+k-1$ and $k-1$ , respectively, in (2.5), we find that

$$ \begin{align*} P(2^{n+1}+k-1)-P(k-1) =\tfrac{1}{2}\times2^{n+1}(3\times2^{n+1}+6k-7) =3\times2^{2n+1}+2^n(6k-7). \end{align*} $$

Lemma 2.5. If n is even and $c_k=P(-{(2^{n+1}-2)}/{3}+(k-1))$ , then

(2.6) $$ \begin{align} P\bigg(\frac{2^{n+2}+2}{3} -k\bigg)&=c_k+2^{2n+1}-2^n(2k-1). \end{align} $$

Proof. We have $c_k=P(((3k-2^{n+1})-1)/{3})$ , so

(2.7) $$ \begin{align} & P\bigg(\frac{2^{n+2}+2}{3} -k\bigg)-c_k =P\bigg(\frac{2^{n+2}-3k+2}{3}\bigg)-P\bigg(\frac{3k-2^{n+1}-1}{3}\bigg)\notag\\ & \quad=\frac{1}{2}\bigg(\frac{2^{n+2}-3k+2}{3}-\frac{3k-2^{n+1}-1}{3}\bigg) \times(2^{n+2}-3k+2+3k-2^{n+1}-1-1)\notag\\ &\quad=2^n (2^{n+1}-2k+1) =2^{2n+1}-2^n(2k-1). \end{align} $$

Now (2.6) follows from (2.7).

Similar calculations give the formulas in the following three lemmas.

Lemma 2.6. If n is even and $c_k=P(-{(2^{n+1}-2)}/{3}+(k-1))$ , then

$$ \begin{align*} P\bigg(\frac{2^{n+2}+2}{3} +k-1\bigg)=c_k+2^{2n+1}+3\times2^n(2k-1). \end{align*} $$

Lemma 2.7. If n is odd and $c_k=P({(2^{n+1}-1)}/{3}-(k-1))$ , then

$$ \begin{align*} P\bigg(\frac{2^{n+1}+2}{3} +k-1\bigg)=c_k+2^{n+1}(2k-1). \end{align*} $$

Lemma 2.8. If n odd is and $c_k=P({(2^{n+1}-1)}/{3}-(k-1))$ , then

$$ \begin{align*} P\bigg(\frac{2^{n+3}+2}{3} -k\bigg)=c_k+5\times2^{2n+1}-3\times2^{n}(2k-1). \end{align*} $$

3 Proof of the main result

Theorem 3.1. Conjecture 1.2 is true.

Proof. We set $a=-q$ , $b=-q^2$ , $c=-q^{2^{2n+2}} d=-q^{2^{2n+3}}$ , $k_1=k_2=2^{n+1}$ and $r=k-1$ in (1.6) to obtain

(3.1) $$ \begin{align} &f(-q,-q^2)f(-q^{2^{2n+2}},-q^{2^{2n+3}}) \notag\\ &\quad =\sum_{k=1}^{2^{n+2}}(-1)^{k+1}q^{{(k-1)(3k-4)}/{2}} f (-q^{7\times2^{2n+1}+2^n(6k-7)},-q^{5\times2^{2n+1}-2^n(6k-7)})\notag\\ &\qquad\times f(-q^{5\times2^{2n+1}+2^n(6k-7)},-q^{7\times2^{2n+1}-2^n(6k-7)}). \end{align} $$

Since $f(-q,-q^2)=E(q)$ , $f(-q^{2^{2n+2}},-q^{2^{2n+3}})=E(q^{2^{2n+2}})$ , $P(k-1)={(k-1)(3k-4)}/{2}$ , we can rewrite (3.1) as

(3.2) $$ \begin{align} E(q)E(q^{2^{2n+2}})&= \sum_{k=1}^{2^{n+2}}T_k =\sum_{k=1}^{2^{n+2}}(-1)^{k+1} q^{P(k-1)}f(-q^{7\times2^{2n+1}+2^n(6k-7)}, -q^{5\times2^{2n+1}-2^n(6k-7)}),\notag\\ &\quad\times f(-q^{5\times2^{2n+1}+2^n(6k-7)},-q^{7\times2^{2n+1}-2^n(6k-7)}), \end{align} $$

where

(3.3) $$ \begin{align} T_k&=(-1)^{k+1}q^{P(k-1)}f(-q^{7\times2^{2n+1}+2^n(6k-7)},-q^{5\times2^{2n+1}-2^n(6k-7)})\notag\\ &\quad\times f(-q^{5\times2^{2n+1}+2^n(6k-7)},-q^{7\times2^{2n+1}-2^n(6k-7)}). \end{align} $$

Now

(3.4) $$ \begin{align} T_{2^{n+1}+k}&=(-1)^{2^{n+1}+k+1}q^{P(2^{n+1}+k-1)}f(-q^{7\times2^{2n+1}+2^n(6(2^{n+1}+k)-7)},-q^{5\times2^{2n+1}-2^n(6(2^{n+1}+k)-7)})\notag\\ &\quad\times f(-q^{5\times2^{2n+1}+2^n(6(2^{n+1}+k)-7)},-q^{7\times2^{2n+1}-2^n(6(2^{n+1}+k)-7)}). \end{align} $$

Employing (2.4) and simplifying the exponents of the arguments of the theta functions, we can rewrite (3.4) as

(3.5) $$ \begin{align} T_{2^{n+1}+k}&=(-1)^{k+1}q^{P(k-1)}q^{3\times2^{2n+1}+2^n(6k-7)}f(-q^{13\times2^{2n+1}+2^n(6k-7)},-q^{-2^{2n+1}-2^n(6k-7)})\notag\\ &\quad\times f(-q^{11\times2^{2n+1}+2^n(6k-7)},-q^{2^{2n+1}-2^n(6k-7)}). \end{align} $$

Adding (3.3) and (3.5) yields

(3.6) $$ \begin{align} T_k+ T_{2^{n+1}+k}&=(-1)^{k+1}q^{P(k-1)}(f(-q^{7\times2^{2n+1}+2^n(6k-7)},-q^{5\times2^{2n+1}-2^n(6k-7)})\notag\\ &\quad\times f(-q^{5\times2^{2n+1}+2^n(6k-7)},-q^{7\times2^{2n+1}-2^n(6k-7)})\notag\\ &\quad +q^{3\times2^{2n+1}+2^n(6k-7)}f(-q^{13\times2^{2n+1}+2^n(6k-7)},-q^{-2^{2n+1}-2^n(6k-7)})\notag\\ &\quad\times f(-q^{11\times2^{2n+1}+2^n(6k-7)},-q^{2^{2n+1}-2^n(6k-7)})). \end{align} $$

Setting $a=q^{3\times 2^{2n+1}+2^n(6k-7)}$ , $b=q^{3\times 2^{2n+1}-2^n(6k-7)}$ , $c=-q^{2^{2n+2}}$ and $d=-q^{2^{2n+3}}$ in (3.6) gives

(3.7) $$ \begin{align} T_k+ T_{2^{n+1}+k}=(-1)^{k+1}q^{P(k-1)}\bigg(f(ac,bd)f(ad,bc)+af\bigg(\frac{b}{c},\frac{c}{b}abcd\bigg)f\bigg(\frac{b}{d},\frac{d}{b}abcd\bigg)\bigg). \end{align} $$

Employing (2.1) in (3.7),

(3.8) $$ \begin{align} T_k+ T_{2^{n+1}+k}&=(-1)^{k+1}q^{P(k-1)}f(a,b)f(c,d)\notag\\ &=(-1)^{k+1}q^{P(k-1)}f(q^{3\times2^{2n+1}+2^n(6k-7)},q^{3\times2^{2n+1}-2^n(6k-7)})f(-q^{2^{2n+2}},-q^{2^{2n+3}})\notag\\ &=(-1)^{k+1}q^{P(k-1)}f(q^{3\times2^{2n+1}+2^n(6k-7)},q^{3\times2^{2n+1}-2^n(6k-7)})E(q^{2^{2n+2}}). \end{align} $$

From (3.2),

(3.9) $$ \begin{align} E(q)E(q^{2^{2n+2}})=\sum_{k=1}^{2^{n+1}}(T_k+T_{2^{n+1}+k}). \end{align} $$

Using (3.8) in (3.9),

$$ \begin{align*} E(q)=\sum_{k=1}^{2^{n+1}}(-1)^{k+1}q^{P(k-1)}f(q^{3\times2^{2n+1}+2^n(6k-7)},q^{3\times2^{2n+1}-2^n(6k-7)}) =\sum_{k=1}^{2^{n+1}}H_k, \end{align*} $$

where $H_k=(-1)^{k+1}q^{P(k-1)}f(q^{3\times 2^{2n+1}+2^n(6k-7)},q^{3\times 2^{2n+1}-2^n(6k-7)})$ . We now arrange the $H_k$ in pairs so that each of these pairs can be reduced to quintuple products. For this purpose, we consider two separate cases according to whether n is even or odd.

Case I: n is even. We consider

(3.10) $$ \begin{align} S_1&=\sum_{k=1}^{{(2^{n+1}-2)}/{3}}(H_{{(2^{n+2}+2)}/{3}-k+1}+H_{{(2^{n+2}+5)}/{3}+k-1}), \end{align} $$
(3.11) $$ \begin{align} S_2 &=\sum_{k={(2^{n+1}+1)}/{3}}^{2^n}(H_{k+1-{(2^{n+1}+1)}/{3}}+H_{{(2^{n+2}+5)}/{3}-k}). \end{align} $$

Note that $S_2$ is the sum of $H_1,H_2,\ldots ,H_{{(2^{n+1}+4)}/{3}}$ and $S_1$ is the sum of $H_{{(2^{n+1}+7)}/{3}}$ , $H_{{(2^{n+1}+10)}/{3}},\ldots ,H_{2^{n+1}}$ and so

(3.12) $$ \begin{align} E(q) &= S_1+S_2. \end{align} $$

We also note that $c_k$ is given by (1.4).

Now

(3.13) $$ \begin{align} H_{{(2^{n+2}+2)}/{3}-k+1} & = (-1)^{{(2^{n+2}+2)}/{3}-k}q^{P({(2^{n+2}+2)}/{3}-k)}\notag\\ &\quad\times f(q^{3\times2^{2n+1}+2^n(6({(2^{n+2}+2)}/{3}-k+1)-7)},q^{3\times2^{2n+1}-2^n(6({(2^{n+2}+2)}/{3}-k+1)-7)}). \end{align} $$

Employing Lemma 2.5 in (3.13) and simplifying the exponents of the arguments of the theta functions, we find that

(3.14) $$ \begin{align} H_{{(2^{n+2}+2)}/{3}-k+1} & = (-1)^{k}q^{c_k+2^{2n+1}-2^n(2k-1)}f(q^{7\times2^{2n+1}-3\times2^n(2k-1)},q^{-2^{2n+1}+3\times2^n(2k-1)}). \end{align} $$

Also

(3.15) $$ \begin{align} H_{{(2^{n+2}+5)}/{3}+k-1} & = (-1)^{{(2^{n+2}+5)}/{3}+k}q^{P({(2^{n+2}+2)}/{3}+k-1)}\notag\\ &\quad\times f(q^{3\times2^{2n+1}+2^n(6({(2^{n+2}+2)}/{3}+k)-7)}, q^{3\times2^{2n+1}-2^n(6({(2^{n+2}+2)}/{3}+k)-7)}). \end{align} $$

Employing Lemma 2.6 in (3.15) and simplifying the exponents,

(3.16) $$ \begin{align} H_{{(2^{n+2}+5)}/{3}+k-1} & = (-1)^{k+1}q^{c_k+2^{2n+1}+3\times2^n(2k-1)}f(q^{7\times2^{2n+1}+3\times2^n(2k-1)},q^{-2^{2n+1}-3\times2^n(2k-1)}). \end{align} $$

Using (2.3) in (3.16),

(3.17) $$ \begin{align} H_{{(2^{n+2}+5)}/{3}+k-1} & = (-1)^{k+1}q^{c_k}f(q^{5\times2^{2n+1}-3\times2^n(2k-1)},q^{2^{2n+1}+3\times2^n(2k-1)}). \end{align} $$

Substituting the expressions for $H_{{(2^{n+2}+2)}/{3}-k+1}$ and $H_{{(2^{n+2}+5)}/{3}+k-1}$ from (3.14) and (3.17), respectively, in (3.10), we find that

(3.18) $$ \begin{align} S_1&=\sum_{k=1}^{{(2^{n+1}-2)}/{3}}(-1)^{k+1}q^{c_k}(f(q^{5\times2^{2n+1}-3\times2^n(2k-1)},q^{2^{2n+1}+3\times2^n(2k-1)})\notag\\ &\quad-q^{2^{2n+1}-2^n(2k-1)}f(q^{7\times2^{2n+1}-3\times2^n(2k-1)},q^{-2^{2n+1}+3\times2^n(2k-1)})). \end{align} $$

Further,

(3.19) $$ \begin{align} H_{k+1-{(2^{n+1}+1)}/{3}} & = (-1)^{k-{(2^{n+1}+1)}/{3}}q^{P(k-{(2^{n+1}+1)}/{3})}\notag\\ &\quad\times f(q^{3\times2^{2n+1}+2^n(6(k+1-{(2^{n+1}+1)}/{3})-7)},q^{3\times2^{2n+1}-2^n(6(k+1-{(2^{n+1}+1)}/{3})-7)})\notag\\ & = (-1)^{k+1}q^{c_k}f(q^{2^{2n+1}+3\times2^n(2k-1)},q^{5\times2^{2n+1}-3\times2^n(2k-1)}). \end{align} $$

Also,

(3.20) $$ \begin{align} H_{{(2^{n+2}+5)}/{3}-k} & = (-1)^{{(2^{n+2}+5)}/{3}-k+1}q^{P({(2^{n+2}+5)}/{3}-k-1)}\notag\\ &\quad\times f(q^{3\times2^{2n+1}+2^n(6({(2^{n+2}+5)}/{3}-k)-7)},q^{3\times2^{2n+1}-2^n(6({(2^{n+2}+5)}/{3}-k)-7)}). \end{align} $$

Employing Lemma 2.5 in (3.20) and simplifying the exponents,

(3.21) $$ \begin{align} H_{{(2^{n+2}+5)}/{3}-k} & = (-1)^{k}q^{c_k+2^{2n+1}-(2k-1)2^n}f(q^{7\times2^{2n+1}-3\times2^n(2k-1)},q^{-2^{2n+1}+3\times2^n(2k-1)}). \end{align} $$

Using (3.19) and (3.21) in (3.11),

(3.22) $$ \begin{align} S_2 &=\sum_{k={(2^{n+1}+1)}/{3}}^{2^n} (-1)^{k+1} q^{c_k}(f(q^{2^{2n+1}+3\times2^n(2k-1)},q^{5\times2^{2n+1}-3\times2^n(2k-1)})\notag\\ &\quad -q^{2^{2n+1}-(2k-1)2^n}f(q^{7\times2^{2n+1}-3\times2^n(2k-1)}, q^{-2^{2n+1}+3\times2^n(2k-1)})). \end{align} $$

From (3.12), (3.18) and (3.22),

(3.23) $$ \begin{align} E(q) & =\bigg(\sum_{k=1}^{{(2^{n+1}-2)}/{3}}+\sum_{k={(2^{n+1}+1)}/{3}}^{2^n}\bigg)(-1)^{k+1}q^{c_k}(f(q^{5\times2^{2n+1}-3\times2^n (2k-1)},q^{2^{2n+1}+3\times2^n(2k-1)}) \notag\\ &\quad-q^{2^{2n+1}-2^n(2k-1)}f(q^{7\times2^{2n+1}-3\times2^n(2k-1)},q^{-2^{2n+1}+3\times2^n(2k-1)}))\notag\\ & =\sum_{k=1}^{2^n}(-1)^{n+k+1}q^{c_k}(f(q^{5\times2^{2n+1}-3\times2^n(2k-1)},q^{2^{2n+1}+3\times2^n(2k-1)})\notag\\ &\quad -q^{2^{2n+1}-2^n(2k-1)}f(q^{7\times2^{2n+1}-3\times2^n(2k-1)},q^{-2^{2n+1}+3\times2^n(2k-1)})). \end{align} $$

Case II: n is odd. In this case, we consider the sums

(3.24) $$ \begin{align} S_3&=\sum_{k=1}^{{(2^{n+1}+2)}/{3}}(H_{{(2^{n+1}+2)}/{3}-k+1}+H_{{(2^{n+1}+5)}/{3}+k-1}), \end{align} $$
(3.25) $$ \begin{align} S_4 &=\sum_{k={(2^{n+1}+5)}/{3}}^{2^n}(H_{{(2^{n+1}+2)}/{3}+k}+H_{{(2^{n+3}+5)}/{3}-k}). \end{align} $$

Note that $S_3$ is the sum of $H_1,H_2,\ldots ,H_{{(2^{n+2}+4)}/{3}}$ and $S_4$ is the sum of $H_{{(2^{n+2}+7)}/{3}}$ , $H_{{(2^{n+2}+10)}/{3}},\ldots ,H_{2^{n+1}}$ and so

(3.26) $$ \begin{align} E(q) &= S_3+S_4. \end{align} $$

We also note that $c_k$ is given by (1.3).

We have

(3.27) $$ \begin{align} H_{{(2^{n+1}+2)}/{3}-k+1}&=(-1)^{{(2^{n+1}+2)}/{3}-k}q^{P({(2^{n+1}+2)}/{3}-k)}\notag\\ &\quad\times f(q^{3\times2^{2n+1}+2^n(6({(2^{n+1}+2)}/{3}-k+1)-7)},q^{3\times2^{2n+1}-2^n(6({(2^{n+1}+2)}/{3}-k+1)-7)})\notag\\ &=(-1)^{k}q^{c_k}f(q^{2^{2n+1}+3\times2^n(2k-1)},q^{5\times2^{2n+1}-3\times2^n(2k-1)}). \end{align} $$

Similarly,

(3.28) $$ \begin{align} H_{{(2^{n+1}+5)}/{3}+k-1} & =(-1)^{{(2^{n+1}+5)}/{3}+k}q^{P({(2^{n+1}+5)}/{3}+k-2)}\notag\\ &\quad\times f(q^{3\times2^{2n+1}+2^n(6({(2^{n+1}+5)}/{3}+k-1)-7)},q^{3\times2^{2n+1}-2^n(6({(2^{n+1}+5)}/{3}+k-1)-7)}). \end{align} $$

Using Lemma 2.7 in (3.28) and simplifying the exponents,

(3.29) $$ \begin{align} H_{{(2^{n+1}+5)}/{3}+k-1} & =(-1)^{k+1}q^{c_k+(2k-1)2^{n+1}}f(q^{2^{2n+1}-3\times2^n(2k-1)},q^{5\times2^{2n+1}+3\times2^n(2k-1)}). \end{align} $$

Now we employ (2.3) in (3.29) to obtain

(3.30) $$ \begin{align} H_{{(2^{n+1}+5)}/{3}+k-1} & =(-1)^{k+1}q^{c_k+(2k-1)2^{n+1}}q^{2^{2n+1}-3\times2^n(2k-1)} \notag\\ & \quad\times f(q^{-2^{2n+1}+3\times2^n(2k-1)},q^{7\times2^{2n+1}-3\times2^n(2k-1)})\notag\\ & =(-1)^{k+1}q^{c_k+2^{2n+1}-2^n(2k-1)}f(q^{-2^{2n+1}+3\times2^n(2k-1)},q^{7\times2^{2n+1}-3\times2^n(2k-1)}). \end{align} $$

Using (3.27) and (3.30) in (3.24),

(3.31) $$ \begin{align} S_3&=\sum_{k=1}^{{(2^{n+1}+2)}/{3}}(-1)^{k}q^{c_k}(f(q^{2^{2n+1}+3\times2^n(2k-1)},q^{5\times2^{2n+1}-3\times2^n(2k-1)})\notag\\ &\quad-q^{2^{2n+1}-2^n(2k-1)}f(q^{-2^{2n+1}+3\times2^n(2k-1)},q^{7\times2^{2n+1}-3\times2^n(2k-1)})). \end{align} $$

Also,

(3.32) $$ \begin{align} H_{{(2^{n+1}+2)}/{3}+k} & =(-1)^{{(2^{n+1}+2)}/{3}+k+1}q^{P({(2^{n+1}+2)}/{3}+k-1)}\notag\\ &\quad\times f(q^{3\times2^{2n+1}+2^n(6({(2^{n+1}+2)}/{3}+k)-7)},q^{3\times2^{2n+1}-2^n(6({(2^{n+1}+2)}/{3}+k)-7)}). \end{align} $$

Using Lemma 2.7 in (3.32) and simplifying the exponents,

(3.33) $$ \begin{align} H_{{(2^{n+1}+2)}/{3}+k} & =(-1)^{k+1}q^{c_k+2^{n+1}(2k-1)}f(q^{2^{2n+1}-3\times2^n(2k-1)},q^{5\times2^{2n+1}+3\times2^n(2k-1)}). \end{align} $$

Employing (2.2) in (3.33), we find that

(3.34) $$ \begin{align} H_{{(2^{n+1}+2)}/{3}+k} & =(-1)^{k+1}q^{c_k+2^{n+1}(2k-1)}q^{2^{2n+1}-3\times2^n(2k-1)}f(q^{-2^{2n+1}+3\times2^n(2k-1)},q^{7\times2^{2n+1}-3\times2^n(2k-1)})\notag\\ &=(-1)^{k+1}q^{c_k}q^{2^{2n+1}-2^n(2k-1)}f(q^{-2^{2n+1}+3\times2^n(2k-1)},q^{7\times2^{2n+1}-3\times2^n(2k-1)}). \end{align} $$

Further,

(3.35) $$ \begin{align} H_{{(2^{n+3}+5)}/{3}-k} & =(-1)^{{(2^{n+3}+5)}/{3}-k+1}q^{P({(2^{n+3}+5)}/{3}-k-1)}\notag\\ &\quad\times f(q^{3\times2^{2n+1}+2^n(6({(2^{n+3}+5)}/{3}-k)-7)},q^{3\times2^{2n+1}-2^n(6({(2^{n+3}+5)}/{3}-k)-7)}). \end{align} $$

Using Lemma 2.8 in (3.35), we find that

(3.36) $$ \begin{align} H_{{(2^{n+3}+5)}/{3}-k} & =(-1)^{k}q^{c_k+5\times2^{2n+1}-3\times2^n(2k-1)}f(q^{-5\times2^{2n+1}+3\times2^n(2k-1)},q^{11\times2^{2n+1}-3\times2^n(2k-1)}). \end{align} $$

Employing (2.3) in (3.36),

(3.37) $$ \begin{align} H_{{(2^{n+3}+5)}/{3}-k} & =(-1)^{k}q^{c_k+5\times2^{2n+1}-3\times2^n(2k-1)}q^{-5\times2^{2n+1}+3\times2^n(2k-1)} \notag\\ &\quad\times f(q^{5\times2^{2n+1}-3\times2^n(2k-1)},q^{2^{2n+1}+3\times2^n(2k-1)})\notag\\ & =(-1)^{k}q^{c_k}f(q^{5\times2^{2n+1}-3\times2^n(2k-1)},q^{2^{2n+1}+3\times2^n(2k-1)}). \end{align} $$

From (3.34), (3.37) and (3.25),

(3.38) $$ \begin{align} S_4 & =\sum_{k={(2^{n+1}+5)}/{3}}^{2^n}(-1)^{k}q^{c_k}(f(q^{5\times2^{2n+1}-3\times2^n(2k-1)},q^{2^{2n+1}+3\times2^n(2k-1)})\notag\\ &\quad -q^{2^{2n+1}-2^n(2k-1)}f(q^{-2^{2n+1}+3\times2^n(2k-1)},q^{7\times2^{2n+1}-3\times2^n(2k-1)})). \end{align} $$

Substituting the expressions for $S_3$ and $S_4$ from (3.31) and (3.38), respectively, in (3.26),

(3.39) $$ \begin{align} E(q)&= \bigg(\sum_{k=1}^{{(2^{n+1}+2)}/{3}}+\sum_{k={(2^{n+1}+5)}/{3}}^{2^n}\bigg)(-1)^{k}q^{c_k}(f(q^{5\times2^{2n+1}-3\times2^n(2k-1)}, q^{2^{2n+1}+3\times2^n(2k-1)})\notag\\ & \quad-q^{2^{2n+1}-2^n(2k-1)}f(q^{-2^{2n+1}+3\times2^n(2k-1)},q^{7\times2^{2n+1}-3\times2^n(2k-1)}))\notag\\ &=\sum_{k=1}^{2^n}(-1)^{n+k+1}q^{c_k}(f(q^{5\times2^{2n+1}-3\times2^n(2k-1)},q^{2^{2n+1}+3\times2^n(2k-1)})\notag\\ & \quad-q^{2^{2n+1}-2^n(2k-1)}f(q^{-2^{2n+1}+3\times2^n(2k-1)},q^{7\times2^{2n+1}-3\times2^n(2k-1)})). \end{align} $$

From (3.23) and (3.39) we find that, for any positive integer n,

(3.40) $$ \begin{align} E(q)&= \sum_{k=1}^{2^n}(-1)^{n+k+1}q^{c_k}(f(q^{5\times2^{2n+1}-3\times2^n(2k-1)},q^{2^{2n+1}+3\times2^n(2k-1)})\notag\\ &\quad -q^{2^{2n+1}-2^n(2k-1)}f(q^{-2^{2n+1}+3\times2^n(2k-1)},q^{7\times2^{2n+1}-3\times2^n(2k-1)})), \end{align} $$

where the appropriate expression for $c_k$ is chosen according to whether n is even or odd.

Setting $A=-q^{-2^{2n+1}+2^n(2k-1)}$ and $Q=q^{2^{2n+2}}$ in (3.40), we obtain

(3.41) $$ \begin{align} E(q)&= \sum_{k=1}^{2^n}(-1)^{n+k+1}q^{c_k}(f(-A^3Q^2,-A^{-3}Q)+A^{-1}f(-A^3Q,-A^{-3}Q^2)). \end{align} $$

Employing the quintuple product identity in (3.41),

$$ \begin{align*} E(q)&= \sum_{k=1}^{2^n}(-1)^{n+k+1}q^{c_k}(-AQ;Q)_\infty(-A^{-1};Q)_\infty(A^2Q;Q^2)_\infty(A^{-2}Q;Q^2)_\infty(Q;Q)_\infty\\ &= \sum_{k=1}^{2^n}(-1)^{n+k+1}q^{c_k}(A^2Q,A^{-2}Q;Q^2)_\infty(-AQ,-A^{-1},Q;Q)_\infty\\ &= \sum_{k=1}^{2^n}(-1)^{n+k+1}q^{c_k}(q^{2^{n+1}(2k-1)},q^{2^{2n+3}-2^{n+1}(2k-1)};q^{2^{2n+3}})_\infty\\ &\quad\times (q^{2^{2n+1}+2^{n}(2k-1)},q^{2^{2n+1}-2^{n}(2k-1)},q^{2^{2n+2}};q^{2^{2n+2}})_\infty. \end{align*} $$

Thus we have completed the proof of Conjecture 1.2.

References

Berndt, B. C., Ramanujan’s Notebooks, Part III (Springer-Verlag, New York, 1991).CrossRefGoogle Scholar
Berndt, B. C., Number Theory in the Spirit of Ramanujan (American Mathematical Society, Providence, RI, 2006).CrossRefGoogle Scholar
Cao, Z., ‘Integer matrix exact covering systems and product identities for theta functions’, Int. Math. Res. Not. IMRN 2011 (2011), 44714514.Google Scholar
Evans, R. J., ‘Theta function identities’, J. Math. Anal. Appl. 147(1) (1990), 97121.CrossRefGoogle Scholar
Hirschhorn, M. D., The Power of $q$ , Developments in Mathematics, 49 (Springer, Cham, 2017).Google Scholar
McLaughlin, J., ‘ $m$ -Dissections of some infinite products and related identities’, Ramanujan J. 59 (2022), 313350.CrossRefGoogle Scholar
Ramanathan, K. G., ‘Generalisations of some theorems of Ramanujan’, J. Number Theory 29(2) (1988), 118137.CrossRefGoogle Scholar