Hostname: page-component-669899f699-7xsfk Total loading time: 0 Render date: 2025-04-28T06:15:49.170Z Has data issue: false hasContentIssue false

A Model Implied Instrumental Variable Approach to Exploratory Factor Analysis (MIIV-EFA)

Published online by Cambridge University Press:  27 December 2024

Kenneth A. Bollen*
Affiliation:
University of North Carolina at Chapel Hill
Kathleen M. Gates
Affiliation:
University of North Carolina at Chapel Hill
Lan Luo
Affiliation:
University of North Carolina at Chapel Hill
*
Correspondence should bemade to Kenneth A. Bollen, Thurstone Psychometric Laboratory, Department of Psychology and Neuroscience, Department of Sociology, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, USA. Email: bollen@unc.edu

Abstract

Spearman (Am J Psychol 15(1):201–293, 1904. https://doi.org/10.2307/1412107) marks the birth of factor analysis. Many articles and books have extended his landmark paper in permitting multiple factors and determining the number of factors, developing ideas about simple structure and factor rotation, and distinguishing between confirmatory and exploratory factor analysis (CFA and EFA). We propose a new model implied instrumental variable (MIIV) approach to EFA that allows intercepts for the measurement equations, correlated common factors, correlated errors, standard errors of factor loadings and measurement intercepts, overidentification tests of equations, and a procedure for determining the number of factors. We also permit simpler structures by removing nonsignificant loadings. Simulations of factor analysis models with and without cross-loadings demonstrate the impressive performance of the MIIV-EFA procedure in recovering the correct number of factors and in recovering the primary and secondary loadings. For example, in nearly all replications MIIV-EFA finds the correct number of factors when N is 100 or more. Even the primary and secondary loadings of the most complex models were recovered when the sample sizes were at least 500. We discuss limitations and future research areas. Two appendices describe alternative MIIV-EFA algorithms and the sensitivity of the algorithm to cross-loadings.

Type
Theory & Methods
Copyright
Copyright © 2024 The Author(s), under exclusive licence to The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11336-024-09949-6.

References

Albert, A. A. (1944a). The matrices of factor analysis. Proceedings of the National Academy of Sciences of the United States of America, 30(4), 90–95. http://www.jstor.org/stable/87882.CrossRefGoogle Scholar
Albert, A. A. (1944b). The minimum rank of a correlation matrix. Proceedings of the National Academy of Sciences of the United States of America, 30, 144–146.CrossRefGoogle Scholar
Angrist, J. D., Krueger, A. B.. (2001). Instrumental variables and the search for identification: From supply and demand to natural experiments. Journal of Economic Perspective, 15, 6985.CrossRefGoogle Scholar
Asparouhov, T., Muthén, B.. (2009). Exploratory structural equation modeling. Structural Equation Modeling, 16, 397438.CrossRefGoogle Scholar
Bentler, P. M.. (1982). Confirmatory factor analysis via noniterative estimation: A fast, inexpensive method. Journal of Marketing Research, 19(4), 417424.CrossRefGoogle Scholar
Bollen, K. A.Koelega, H. S.. (1987). Structural equation approaches to subjective air quality. Environmental annoyance: characterization, measurement, and control,Elsevier Science Publishers 5772.Google Scholar
Bollen, K. A.. (1989). Structural equations with latent variables, Wiley.CrossRefGoogle Scholar
Bollen, K. A.. (1996). An alternative two stage least squares (2SLS) estimator for latent variable equations. Psychometrika, 61(1), 109121.CrossRefGoogle Scholar
Bollen, K. A.. (2012). Instrumental variables in sociology and the social sciences. Annual Review of Sociology, 38, 3772.CrossRefGoogle Scholar
Bollen, K. A.. (2019). Model implied instrumental variables (MIIVs): An alternative orientation to structural equation modeling. Multivariate Behavioral Research, 54(1), 3146.CrossRefGoogle ScholarPubMed
Bollen, K. A.. (2020). When good loadings go bad: Robustness in factor analysis. Structural Equation Modeling: A Multidisciplinary Journal, 27(4), 515524.CrossRefGoogle ScholarPubMed
Bollen, K. A., Arminger, G.. (1991). Observational residuals in factor analysis and structural equation models. Sociological Methodology, 21, 235–62.CrossRefGoogle Scholar
Bollen, K. A., Bauer, D. J.. (2004). Automating the selection of model-implied instrumental variables. Sociological Methods & Research, 32(4), 425452.CrossRefGoogle Scholar
Bollen, K. A., Fisher, Z. F., Giordano, M. L., Lilly, A. G., Luo, L., Ye, A.. (2021). An introduction to model implied instrumental variables using two stage least squares (MIIV-2SLS) in structural equation models (SEMs). Psychological Methods, 27(5), 752772.CrossRefGoogle ScholarPubMed
Bollen, K. A., Gates, K. M., Fisher, Z.. (2018). Robustness conditions for MIIV-2SLS when the latent variable or measurement model is structurally misspecified. Structural Equation Modeling: A Multidisciplinary Journal, 25(2), 848859.CrossRefGoogle ScholarPubMed
Bollen, K. A., Kirby, J. B., Curran, P. J., Paxton, P. M., Chen, F.. (2007). Latent variable models under misspecification: Two-stage least squares (2SLS) and maximum likelihood (ML) estimators. Sociological Methods & Research, 36(1), 4886.CrossRefGoogle Scholar
Bollen, K. A., Kolenikov, S., Bauldry, S.. (2014). Model-implied instrumental variable– generalized method of moments (MIIV-GMM) estimators for latent variable models. Psychometrika, 79, 2050.CrossRefGoogle ScholarPubMed
Bollen, K. A., Maydeu-Oliveres, A.. (2007). A polychoric instrumental variable (PIV) estimator for structural equation models with categorical variables. Psychometrika, 72, 309326.CrossRefGoogle Scholar
Bowden, R. J., Turkington, D. A.. (1990). Instrumental variables, Cambridge University.Google Scholar
Burt, C. (1917). The distribution and relations of educational abilities.Google Scholar
Carey, N.. (1916). Factors in the Mental Processes of School Children. III. Factors concerned in the School Subjects. British Journal of Psychology, 8, 170.Google Scholar
Cattell, R.. (2012). The scientific use of factor analysis in behavioral and life sciences, Springer.Google Scholar
Cudeck, R.. (1991). Noniterative factor analysis estimators, with algorithms for subset and instrumental variable selection. Journal of Educational Statistics, 16(1), 3552.CrossRefGoogle Scholar
Darton, R. A.. (1980). Rotation in factor analysis. Journal of the Royal Statistical Society. Series D (The Statistician), 29(3), 167194.Google Scholar
Didelez, V., Meng, S., Sheehan, N. A.. (2010). Assumptions of IV methods for observational epidemiology. Statistical Science, 25, 2240.CrossRefGoogle Scholar
Du Toit, A. (1986). The development of a non-iterative method of exploratory factor analysis. Unpublished B.Sc. honors thesis, University of South Africa, Pretoria, South Africa.Google Scholar
Fisher, A. J., Boswell, J. F.. (2016). Enhancing the personalization of psychotherapy with dynamic assessment and modeling. Assessment, 23(4), 496506.CrossRefGoogle ScholarPubMed
Fisher, Z., Bollen, K. A.. (2020). An instrumental variable estimator for mixed indicators: Analytic derivatives and alternative parameterizations. Psychometrika, 85(3), 660683.CrossRefGoogle ScholarPubMed
Fisher, Z., Bollen, K., Gates, K., & Rönkkö, M. (2021). MIIVsem: Model implied instrumental variable (MIIV) estimation of structural equation models. R package version 0.5.8, https://CRAN.R-project.org/package=MIIVsem.Google Scholar
Gorsuch, R. L.. (1983). Factor analysis, 2Erlbaum 1983.Google Scholar
Hägglund, G.. (1982). Factor analysis by instrumental variables methods. Psychometrika, 47(1), 209222.CrossRefGoogle Scholar
Harman, H. H.. (1976). Modern Factor Analysis, 3University of Chicago Press.Google Scholar
Holm, S.. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 6570.Google Scholar
Holzinger, K. J., Swineford, F.. (1939). A study in factor analysis: The stability of a bi-factor solution. Supplementary Educational Monographs, 48, xi + 91.Google Scholar
Ihara, M., Kano, Y.. (1986). A new estimator of the uniqueness in factor analysis. Psychometrika, 51(4), 563566.CrossRefGoogle Scholar
Jennrich, R. I.. (1987). Tableau algorithms for factor analysis by instrumental variable methods. Psychometrika, 52(3), 469476.CrossRefGoogle Scholar
Jin, S., Cao, C.. (2018). Selecting polychoric instrumental variables in confirmatory factor analysis: An alternative specification test and effects of instrumental variables. British Journal of Mathematical and Statistical Psychology, 71, 387413.CrossRefGoogle ScholarPubMed
Jin, S., Yang-Wallentin, F., Bollen, K. A. (2021). A unified model-implied instrumental variable approach for structural equation modeling with mixed variables. Psychometrika, 86(2), 564–595.CrossRefGoogle Scholar
Jöreskog, K. G.. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34(1), 183202.CrossRefGoogle Scholar
Kano, Y.. (1990). Noniterative estimation and the choice of the number of factors in exploratory factor analysis. Psychometrika, 55(2), 277291.CrossRefGoogle Scholar
Kirby, J. B., Bollen, K. A.. (2009). 10. Using instrumental variable tests to evaluate model specification in latent variable structural equation models. Sociological Methodology, 39(1), 327355.CrossRefGoogle Scholar
Kyriazos, T. A.. (2018). Applied psychometrics: Sample size and sample power considerations in factor analysis (EFA, CFA) and SEM in general. Psychology, 9(08), 2207.CrossRefGoogle Scholar
Lawley, D. N., Maxwell, A. E.. (1963). Factor analysis as a statistical method, Butterworths.Google Scholar
Madansky, A.. (1964). Instrumental variables in factor analysis. Psychometrika, 29(1), 105113.CrossRefGoogle Scholar
Molenaar, P. C., Campbell, C. G.. (2009). The new person-specific paradigm in psychology. Current Directions in Psychological Science, 18(1), 112117.CrossRefGoogle Scholar
Mroz, Thomas A, Bollen, Kenneth A, Speizer, Ilene S, Mancini, Dominic J. (1999). Quality, accessibility, and contraceptive use in rural Tanzania. Demography, 36(1), 2340.CrossRefGoogle ScholarPubMed
Mulaik, S. A.. (2009). Foundations of factor analysis, 2Chapman & Hall/CRC.CrossRefGoogle Scholar
Nestler, S.. (2014). How the 2 SLS/IV estimator can handle equality constraints in structural equation models: A system-of-equations approach. British Journal of Mathematical and Statistical Psychology, 67(1), 353369.CrossRefGoogle Scholar
Nunnally, J. C.. (1978). Psychometric theory, 2McGraw-Hil.Google Scholar
Preacher, Kristopher J, Zhang, Guangjian, Kim, Cheongtag, Mels, Gerhard. (2013). Choosing the optimal number of factors in exploratory factor analysis: A model selection perspective. Multivariate Behavioral Research, 48(1), 2856.CrossRefGoogle ScholarPubMed
Rosseel, Yves. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(1), 136.CrossRefGoogle Scholar
Sargan, J. D.. (1958). The estimation of economic relationships using instrumental variables. Econometrica: Journal of the Econometric Society, 26, 393415.CrossRefGoogle Scholar
Sovey, A. J., Green, D. P.. (2011). Instrumental variables estimation in political science: A reader’s guide. American Journal of Political Science, 55, 188200.CrossRefGoogle Scholar
Spearman, C.. (1904). ‘General intelligence’, objectively determined and measured. The American Journal of Psychology, 15(1), 201293.CrossRefGoogle Scholar
Thurstone, L. L.. (1947). Multiple factor analysis, University of Chicago Press.Google Scholar
Toyoda, H. (1997). A noniterative estimation in confirmatory factor analysis by an instrumental variable method. Behaviormetrika, 24, 147–158.CrossRefGoogle Scholar
Urban, C., Bauer, D.. (2021). A deep learning algorithm for high-dimensional exploratory item factor analysis. Psychometrika, 86(1), 129.CrossRefGoogle ScholarPubMed
van Zyl, L. E., ten Klooster, P. M.. (2022). Exploratory structural equation modeling: practical guidelines and tutorial with a convenient online tool for Mplus. Frontiers in Psychiatry, 12.CrossRefGoogle ScholarPubMed
Supplementary material: File

Bollen et al. supplementary material 1

Bollen et al. supplementary material 1
Download Bollen et al. supplementary material 1(File)
File 2.1 KB
Supplementary material: File

Bollen et al. supplementary material 2

Bollen et al. supplementary material 2
Download Bollen et al. supplementary material 2(File)
File 17.5 KB
Supplementary material: File

Bollen et al. supplementary material 3

Bollen et al. supplementary material 3
Download Bollen et al. supplementary material 3(File)
File 14.2 KB
Supplementary material: File

Bollen et al. supplementary material 4

Bollen et al. supplementary material 4
Download Bollen et al. supplementary material 4(File)
File 19.1 KB
Supplementary material: File

Bollen et al. supplementary material 5

Bollen et al. supplementary material 5
Download Bollen et al. supplementary material 5(File)
File 12 KB
Supplementary material: File

Bollen et al. supplementary material 6

Bollen et al. supplementary material 6
Download Bollen et al. supplementary material 6(File)
File 1.4 KB