Hostname: page-component-669899f699-tpknm Total loading time: 0 Render date: 2025-04-24T20:07:04.492Z Has data issue: false hasContentIssue false

Longitudinal echocardiographic parameters for evaluation of pulmonary hypertension in preterm infants with very low birth weight

Published online by Cambridge University Press:  10 October 2024

Kwannapas Saengsin*
Affiliation:
Division of Cardiology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
Varangthip Khuwuthayakorn
Affiliation:
Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
Yupada Prongprot
Affiliation:
Division of Cardiology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
Rekwan Sittiwangkul
Affiliation:
Division of Cardiology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
Phichayut Phinyo
Affiliation:
Center for Clinical Epidemiology and Clinical Statistics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
Krittai Tanasombatkul
Affiliation:
Center for Clinical Epidemiology and Clinical Statistics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
Munranee Langu
Affiliation:
Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
*
Corresponding author: Kwannapas Saengsin; Email: [email protected]

Abstract

Background:

Echocardiography is essential for the evaluation of pulmonary hypertension. We determined the feasible quantitative parameter for screening and monitoring pulmonary hypertension in preterm infants.

Methods:

This secondary analysis of a prospective cohort single-centre study was conducted between August 2019 and September 2020. Serial echocardiography was performed 7 and 28 days after birth and at 36 weeks postmenstrual age. The data of infants who developed pulmonary hypertension at 36 weeks postmenstrual age were compared with those without pulmonary hypertension. We also modelled the parameters’ trend and performed an interaction test using multi-level Gaussian regression.

Results:

Out of 30 infants enrolled in the study, 79 echocardiograms were analysed. Left ventricular eccentric index was obtainable in all infants, while tricuspid jet velocity was measurable in 44.1%. Left ventricular eccentric index correlated well with tricuspid regurgitation jet velocity (r = 0.77, P < 0.001). Six infants were diagnosed with newly developed or persistent pulmonary hypertension at 36 weeks postmenstrual age. Serial left ventricular eccentric index showed a significantly different increasing trend in the pulmonary hypertension group (change per day: +0.004; P = 0.090) from the decreasing trend among a non-pulmonary hypertension group (change per day: –0.001; P = 0.041) (P for interaction = 0.007). Right ventricular systolic function and right ventricular isovolumic systolic velocity revealed a reducing trend in the pulmonary hypertension group, which was different from the improving trend in non-pulmonary hypertension infants. Infants with low current weight, low postmenstrual age, and requiring high-flow oxygen therapy at day 28 of life trended to increase the risk of late pulmonary hypertension.

Conclusion:

Left ventricular eccentric index and right ventricular isovolumic systolic velocity were feasible for assessing pulmonary hypertension and should be incorporated into pulmonary hypertension evaluation. Serial left ventricular eccentric index and right ventricular isovolumic systolic velocity may help predict late pulmonary hypertension and early detection of right ventricular dysfunction.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Gentle, SJ, Abman, SH, Ambalavanan, N. Oxygen therapy and pulmonary hypertension in preterm infants. Clin Perinatol 2019; 46: 611619.CrossRefGoogle ScholarPubMed
Slaughter, JL, Pakrashi, T, Jones, DE, South, AP, Shah, TA. Echocardiographic detection of pulmonary hypertension in extremely low birth weight infants with bronchopulmonary dysplasia requiring prolonged positive pressure ventilation. J Perinatol 2011; 31: 635640.CrossRefGoogle ScholarPubMed
Ali, Z, Schmidt, P, Dodd, J, Jeppesen, DL. Predictors of bronchopulmonary dysplasia and pulmonary hypertension in newborn children. Dan Med J 2013; 60: A4688.Google ScholarPubMed
Abman, SH. Pulmonary hypertension: the hidden danger for newborns. Neonatology 2021; 118: 211217.CrossRefGoogle ScholarPubMed
Khemani, E, McElhinney, DB, Rhein, L et al. Pulmonary artery hypertension in formerly premature infants with bronchopulmonary dysplasia: clinical features and outcomes in the surfactant era. Pediatrics 2007; 120: 12601269.CrossRefGoogle ScholarPubMed
Abman, SH, Hansmann, G, Archer, SL et al. Pediatric pulmonary hypertension: guidelines from the American Heart Association and American Thoracic Society. Circulation 2015; 132: 20372099.CrossRefGoogle ScholarPubMed
Amsallem, M, Sternbach, JM, Adigopula, S et al. Addressing the controversy of estimating pulmonary arterial pressure by echocardiography. J Am Soc Echocardiogr 2016; 29 : 93102.CrossRefGoogle ScholarPubMed
Mourani, PM, Sontag, MK, Younoszai, A, Ivy, DD, Abman, SH. Clinical utility of echocardiography for the diagnosis and management of pulmonary vascular disease in young children with chronic lung disease. Pediatrics 2008; 121: 317325.CrossRefGoogle Scholar
Nagiub, M, Lee, S, Guglani, L. Echocardiographic assessment of pulmonary hypertension in infants with bronchopulmonary dysplasia: systematic review of literature and a proposed algorithm for assessment. Echocardiography 2015; 32: 819833.CrossRefGoogle Scholar
Burkett, DA, Patel, SS, Mertens, L, Friedberg, MK, Ivy, DD. Relationship between left ventricular geometry and invasive hemodynamics in pediatric pulmonary hypertension. Circ Cardiovasc Imaging 2020; 13: e009825.CrossRefGoogle ScholarPubMed
Arjaans, S, Zwart, EAH, Roofthooft, M, Kooi, EMW, Bos, AF, Berger, RMF. Pulmonary hypertension in extremely preterm infants: a call to standardize echocardiographic screening and follow-up policy. Eur J Pediatr 2021; 180: 18551865.CrossRefGoogle Scholar
Bhat, R, Salas, AA, Foster, C, Carlo, WA, Ambalavanan, N. Prospective analysis of pulmonary hypertension in extremely low birth weight infants. Pediatrics 2012; 129: e682689.CrossRefGoogle ScholarPubMed
Mourani, PM, Sontag, MK, Younoszai, A et al. Early pulmonary vascular disease in preterm infants at risk for bronchopulmonary dysplasia. Am J Respir Crit Care Med 2015; 191: 8795.CrossRefGoogle ScholarPubMed
Abraham, S, Weismann, CG. Left ventricular end-systolic eccentricity index for assessment of pulmonary hypertension in infants. Echocardiography 2016; 33: 910915.CrossRefGoogle ScholarPubMed
Ehrmann, DE, Mourani, PM, Abman, SH et al. Echocardiographic measurements of right ventricular mechanics in infants with bronchopulmonary dysplasia at 36 Weeks postmenstrual age. J Pediatr 2018; 203: 210217.e211.CrossRefGoogle ScholarPubMed
McCrary, AW, Malowitz, JR, Hornick, CP et al. Differences in eccentricity index and systolic-diastolic ratio in extremely low-birth-weight infants with bronchopulmonary dysplasia at risk of pulmonary hypertension. Am J Perinatol 2016; 33: 5762.CrossRefGoogle ScholarPubMed
Averin, K, Michelfelder, E, Sticka, J, Cash, M, Hirsch, R. Changes in ventricular geometry predict severity of right ventricular hypertension. Pediatr Cardiol 2016; 37: 575581.CrossRefGoogle ScholarPubMed
Rosenzweig, EB, Abman, SH, Adatia, I et al. Paediatric pulmonary arterial hypertension: updates on definition, classification, diagnostics and management. Eur Respir J 2019; 53: 53.CrossRefGoogle ScholarPubMed
Murase, M, Ishida, A. Serial pulsed Doppler assessment of pulmonary artery pressure in very low birth-weight infants. Pediatr Cardiol 2000; 21: 452457.CrossRefGoogle ScholarPubMed
Koestenberger, M, Nagel, B, Ravekes, W et al. Systolic right ventricular function in preterm and term neonates: reference values of the tricuspid annular plane systolic excursion (TAPSE) in 258 patients and calculation of Z-score values. Neonatology 2011; 100: 8592.CrossRefGoogle ScholarPubMed
Patel, N, Mills, JF, Cheung, MM. Assessment of right ventricular function using tissue Doppler imaging in infants with pulmonary hypertension. Neonatology 2009; 96: 193199.CrossRefGoogle ScholarPubMed
Sehgal, A, Malikiwi, A, Paul, E, Tan, K, Menahem, S. Right ventricular function in infants with Bronchopulmonary Dysplasia: association with respiratory sequelae. Neonatology 2016; 109: 289296.CrossRefGoogle ScholarPubMed
Borges, AC, Knebel, F, Eddicks, S et al. Right ventricular function assessed by two-dimensional strain and tissue doppler echocardiography in patients with pulmonary arterial hypertension and effect of vasodilator therapy. Am J Cardiol 2006; 98: 530534.CrossRefGoogle ScholarPubMed
D’Alto, M, Bossone, E, Opotowsky, AR, Ghio, S, Rudski, LG, Naeije, R. Strengths and weaknesses of echocardiography for the diagnosis of pulmonary hypertension. Int J Cardiol 2018; 263: 177183.CrossRefGoogle ScholarPubMed
Levy, PT, Tissot, C, Horsberg Eriksen, B et al. Application of neonatologist performed echocardiography in the assessment and management of neonatal heart failure unrelated to congenital heart disease. Pediatr Res 2018; 84: 7888.CrossRefGoogle ScholarPubMed
Skinner, JR, Boys, RJ, Hunter, S, Hey, EN. Non-invasive assessment of pulmonary arterial pressure in healthy neonates. Arch Dis Child 1991; 66: 386390.CrossRefGoogle ScholarPubMed
Augustine, DX, Coates-Bradshaw, LD, Willis, J et al. Echocardiographic assessment of pulmonary hypertension: a guideline protocol from the british society of echocardiography. Echo Res Pract 2018; 5: G11G24.CrossRefGoogle ScholarPubMed
de Boode, WP, Singh, Y, Molnar, Z et al. Application of neonatologist performed echocardiography in the assessment and management of persistent pulmonary hypertension of the newborn. Pediatr Res 2018; 84: 6877.CrossRefGoogle ScholarPubMed
Lindqvist, P, Waldenström, A, Wikström, G, Kazzam, E. The use of isovolumic contraction velocity to determine right ventricular state of contractility and filling pressures a pulsed Doppler tissue imaging study. Eur J Echocardiogr 2005; 6: 264270.CrossRefGoogle ScholarPubMed
Oki, T, Tabata, T, Yamada, H et al. Clinical application of pulsed Doppler tissue imaging for assessing abnormal left ventricular relaxation. Am J Cardiol 1997; 79: 921928.CrossRefGoogle ScholarPubMed
Gaspar, HA, Morhy, SS. The role of focused echocardiography in pediatric intensive care: a critical appraisal. Biomed Res Int 2015; 2015: 17.CrossRefGoogle ScholarPubMed
Sullivan, GM, Feinn, R. Using effect size-or why the P value is not enough. J Grad Med Educ 2012; 4: 279282.CrossRefGoogle Scholar
Underwood, MA, Wedgwood, S, Lakshminrusimha, S, Steinhorn, RH. Somatic growth and the risks of bronchopulmonary dysplasia and pulmonary hypertension: connecting epidemiology and physiology. Can J Physiol Pharmacol 2019; 97: 197205.CrossRefGoogle ScholarPubMed
Abman, SH, Lakshminrusimha, S. Pulmonary hypertension in established bronchopulmonary dysplasia: physiologic approaches to clinical care. Clin Perinatol 2024; 51: 195216.CrossRefGoogle ScholarPubMed
Forfia, PR, Vachiéry, JL. Echocardiography in pulmonary arterial hypertension. Am J Cardiol 2012; 110: 16S24S.CrossRefGoogle ScholarPubMed
Ryan, T, Petrovic, O, Dillon, JC, Feigenbaum, H, Conley, MJ, Armstrong, WF. An echocardiographic index for separation of right ventricular volume and pressure overload. J Am Coll Cardiol 1985; 5: 918927.CrossRefGoogle ScholarPubMed
Alabed, S, Sabouni, A, Al Dakhoul, S, Bdaiwi, Y. Beta-blockers for congestive heart failure in children. Cochrane Database Syst Rev 2020; 7: CD007037.Google ScholarPubMed