Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-04-24T15:15:02.424Z Has data issue: false hasContentIssue false

Flow structures and combustion regimes in an axisymmetric scramjet combustor with high Reynolds number

Published online by Cambridge University Press:  25 November 2024

Tao Tang
Affiliation:
Hypersonic Technology Laboratory, National University of Defense Technology, Changsha, Hunan 410073, PR China
Mingbo Sun*
Affiliation:
Hypersonic Technology Laboratory, National University of Defense Technology, Changsha, Hunan 410073, PR China
Bo Yan
Affiliation:
Hypersonic Technology Laboratory, National University of Defense Technology, Changsha, Hunan 410073, PR China
Zhenguo Wang
Affiliation:
Hypersonic Technology Laboratory, National University of Defense Technology, Changsha, Hunan 410073, PR China
Jiangfei Yu
Affiliation:
Hypersonic Technology Laboratory, National University of Defense Technology, Changsha, Hunan 410073, PR China
Yuhui Huang
Affiliation:
Equipment Project Management Center, Equipment Development Department, Beijing 100089, PR China
Hongbo Wang
Affiliation:
Hypersonic Technology Laboratory, National University of Defense Technology, Changsha, Hunan 410073, PR China
Jiajian Zhu*
Affiliation:
Hypersonic Technology Laboratory, National University of Defense Technology, Changsha, Hunan 410073, PR China
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

This study investigates the flow structures and combustion regimes in an axisymmetric cavity-based scramjet combustor with a total temperature of 1800 K and a high Reynolds number of approximately 1 × 107. The hydroxyl planar laser-induced fluorescence technique, along with the broadband flame emission and CH* chemiluminescence, is employed to visualize the instantaneous flame structure in the optically accessible cavity. The jet-wake flame stabilization mode is observed, with intense heat release occurring in the jet wake upstream of the cavity. A hybrid Reynolds-averaged Navier–Stokes/large-eddy simulation approach is performed for the 0.18-equivalent-ratio case with a pressure-corrected flamelet/progress variable model. The combustion regime is identified mainly in the corrugated or wrinkled flamelet regime (approximately 102 < Da < 104, 103 < Ret < 105 where $Da$ is the Damköhler number and $Re_t$ is the turbulent Reynolds number). The combustion process is jointly dominated by supersonic combustion (which accounts for approximately 58 %) and subsonic combustion, although subsonic combustion has a higher heat release rate (peak value exceeding 1 × 109 J (m3s)−1). A partially premixed flame is observed, where the diffusion flame packages a considerable quantity of twisted premixed flame. The shockwave plays a critical role in generating vorticity by strengthening the volumetric expansion and baroclinic torque term, and it can facilitate the chemical reaction rates through the pressure and temperature surges, thereby enhancing the combustion. Combustion also shows a remarkable effect on the overall flow structures, and it drives alterations in the vorticity of the flow field. In turn, the turbulent flow facilitates the combustion and improves the flame stabilization by enhancing the reactant mixing and increasing the flame surface area.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Allison, P.M., Frederickson, K., Kirik, J.W., Rockwell, R.D., Lempert, W.R. & Sutton, J.A. 2017 Investigation of supersonic combustion dynamics via 50 kHz CH* chemiluminescence imaging. Proc. Combust. Inst. 36 (2), 28492856.CrossRefGoogle Scholar
An, B., Wang, Z. & Sun, M. 2021 Flame stabilization enhancement by microjet-based virtual shock wave generators in a supersonic combustor. Phys. Fluids 33 (1), 016104.CrossRefGoogle Scholar
Baccarella, D., Lee, G.S., Liu, Q., Elliott, G.S., Freund, J.B. & Lee, T. 2020 Laser-Induced plasma ignition experiments in a direct-connect supersonic combustor at Mach 3. J. Propul. Power 36 (5), 732743.CrossRefGoogle Scholar
Baccarella, D., Liu, Q., Mcgann, B., Lee, G.-S. & Lee, T. 2021 Isolator-combustor interactions in a circular model scramjet with thermal and non-thermal choking-induced unstart. J. Fluid Mech. 917, A38.CrossRefGoogle Scholar
Balakrishnan, G. & Williams, F.A. 1994 Turbulent combustion regimes for hypersonic propulsion employing hydrogen-air diffusion flames. J. Propul. Power 10 (3), 434437.CrossRefGoogle Scholar
Baumgardner, M.E. & Harvey, J. 2020 Analyzing OH*, CH*, and C2* chemiluminescence of bifurcating FREI propane-air flames in a micro flow reactor. Combust. Flame 221, 349351.CrossRefGoogle Scholar
Baurle, R.A. 2017 Hybrid reynolds-averaged/large-eddy simulation of a scramjet cavity flameholder. AIAA J. 55 (2), 544560.CrossRefGoogle Scholar
Boyce, R.R., Tirtey, S., Brown, L., Creagh, M. & Ogawa, H. 2011 SCRAMSPACE : scramjet-based access-to-space systems. In Paper Presented at the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, CA. AIAA.CrossRefGoogle Scholar
Bulman, M. & Siebenhaar, A. 2006 The rebirth of round hypersonic propulsion. In Paper Presented at the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, CA. AIAA.CrossRefGoogle Scholar
Cao, D., Brod, H.E., Yokev, N. & Michaels, D. 2021 Flame stabilization and local combustion modes in a cavity-based scramjet using different fuel injection schemes. Combust. Flame 233, 111562.CrossRefGoogle Scholar
Cao, D., Brod, H.E., Yokev, N. & Michaels, D. 2023 Vortex dynamics in different combustion regions of a cavity-based scramjet. Proc. Combust. Inst. 39 (3), 31473156.CrossRefGoogle Scholar
Capra, B.R., Boyce, R.R., Kuhn, M. & Hald, H. 2015 Porous versus porthole fuel injection in a radical farming scramjet: numerical analysis. J. Propul. Power 31 (3), 789804.CrossRefGoogle Scholar
Cisneros-Garibay, E., Pantano, C. & Freund, J.B. 2022 Flow and combustion in a supersonic cavity flameholder. AIAA J. 60 (8), 45664577.CrossRefGoogle Scholar
Drozda, T.G., Quinlan, J.R. & Drummond, J.P. 2020 Flamelet modeling for supersonic combustion. In Modeling and Simulation of Turbulent Mixing and Reaction, pp. 127–168. Springer.CrossRefGoogle Scholar
Durbin, P. 2001 Turbulent flows. J. Fluid Mech. 427, 410411.CrossRefGoogle Scholar
Feng, R., Huang, Y., Zhu, J., Wang, Z., Sun, M., Wang, H. & Cai, Z. 2021 Ignition and combustion enhancement in a cavity-based supersonic combustor by a multi-channel gliding arc plasma. Exp. Therm. Fluid Sci. 120, 110248.CrossRefGoogle Scholar
Feng, R., et al. 2022 Suppression of combustion mode transitions in a hydrogen-fueled scramjet combustor by a multi-channel gliding arc plasma. Combust. Flame 237, 111843.CrossRefGoogle Scholar
Fulton, J.A., Edwards, J.R., Cutler, A., Mcdaniel, J. & Goyne, C. 2016 Turbulence/chemistry interactions in a ramp-stabilized supersonic hydrogen-air diffusion flame. Combust. Flame 174, 152165.CrossRefGoogle Scholar
Gamba, M. & Mungal, M.G. 2015 Ignition, flame structure and near-wall burning in transverse hydrogen jets in supersonic crossflow. J. Fluid Mech. 780, 226273.CrossRefGoogle Scholar
Gao, Z., Jiang, C. & Lee, C.-H. 2017 Representative interactive flamelet model and flamelet/progress variable model for supersonic combustion flows. Proc. Combust. Inst. 36 (2), 29372946.CrossRefGoogle Scholar
Huete, C., Sánchez, A.L., Williams, F.A. & Urzay, J. 2015 Diffusion-flame ignition by shock-wave impingement on a supersonic mixing layer. J. Fluid Mech. 784, 74108.CrossRefGoogle Scholar
Ihme, M. & Pitsch, H. 2008 a Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation. Phys. Fluids 20 (5), 055110.CrossRefGoogle Scholar
Ihme, M. & Pitsch, H. 2008 b Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model: 1. A priori study and presumed PDF closure. Combust. Flame 155 (1), 7089.CrossRefGoogle Scholar
Ingenito, A. & Bruno, C. 2010 Physics and regimes of supersonic combustion. AIAA J. 48 (3), 515525.CrossRefGoogle Scholar
Jin, T., Song, C., Wang, H., Gao, Z., Luo, K. & Fan, J. 2021 Direct numerical simulation of a supercritical hydrothermal flame in a turbulent jet. J. Fluid Mech. 922, A8.CrossRefGoogle Scholar
Kawai, S. & Lele, S.K. 2010 Large-eddy simulation of jet mixing in supersonic crossflows. AIAA J. 48 (9), 20632083.CrossRefGoogle Scholar
Ladeinde, F. & Lou, Z. 2017 Pressure treatment in the flamelet modeling of turbulent supersonic combustion. In 55th AIAA Aerospace Sciences Meeting. AIAA.CrossRefGoogle Scholar
Ladeinde, F., Lou, Z. & Li, W. 2019 The effects of pressure treatment on the flamelet modeling of supersonic combustion. Combust. Flame 204, 414429.CrossRefGoogle Scholar
Landsberg, W.O., Vanyai, T., Mcintyre, T.J. & Veeraragavan, A. 2021 Dual/scram-mode combustion limits of ethylene and surrogate endothermically-cracked hydrocarbon fuels at Mach 8 equivalent high-enthalpy conditions. Proc. Combust. Inst. 38 (3), 38353843.CrossRefGoogle Scholar
Li, L., Wang, H., Zhao, G., Sun, M., Xiong, D. & Tang, T. 2020 Efficient WENOCU4 scheme with three different adaptive switches. J. Zhejiang Univ. Sci. A 21 (9), 695720.CrossRefGoogle Scholar
Li, Q., et al. 2023 Investigation of ignition and flame propagation in an axisymmetric supersonic combustor with laser-induced plasma. Phys. Fluids 35 (12), 125133.CrossRefGoogle Scholar
Liu, Q., Baccarella, D., Hammack, S., Lee, T., Carter, C.D. & Do, H. 2017 a Influences of freestream turbulence on flame dynamics in a supersonic combustor. AIAA J. 55 (3), 913918.CrossRefGoogle Scholar
Liu, Q., Baccarella, D., Landsberg, W., Veeraragavan, A. & Lee, T. 2019 a Cavity flameholding in an optical axisymmetric scramjet in Mach 4.5 flows. Proc. Combust. Inst. 37 (3), 37333740.CrossRefGoogle Scholar
Liu, Q., Baccarella, D. & Lee, T. 2020 Review of combustion stabilization for hypersonic airbreathing propulsion. Prog. Aerosp. Sci. 119, 100636.CrossRefGoogle Scholar
Liu, Q., Baccarella, D., Lee, T., Hammack, S., Carter, C.D. & Do, H. 2017 b Influences of inlet geometry modification on scramjet flow and combustion dynamics. J. Propul. Power 33 (5), 11791186.CrossRefGoogle Scholar
Liu, Q., Baccarella, D., Mcgann, B. & Lee, T. 2019 b Cavity-Enhanced combustion stability in an axisymmetric scramjet model. AIAA J. 57 (9), 38983909.CrossRefGoogle Scholar
Menter, F.R. 1994 Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 15981605.CrossRefGoogle Scholar
Micka, D.J. & Driscoll, J.F. 2012 Stratified jet flames in a heated (1390 K) air cross-flow with autoignition. Combust. Flame 159 (3), 12051214.CrossRefGoogle Scholar
Mura, A., Techer, A. & Lehnasch, G. 2022 Analysis of high-speed combustion regimes of hydrogen jet in supersonic vitiated airstream. Combust. Flame 239, 111552.CrossRefGoogle Scholar
Oevermann, M. 2000 Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling. Aerosp. Sci. Technol. 4 (7), 463480.CrossRefGoogle Scholar
Pierce, C.D. & Moin, P. 2004 Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 7397.CrossRefGoogle Scholar
Pitsch, H. 1998 FlameMaster: A C++ Computer Program for 0D Combustion and 1D Laminar Flame Calculations [EB/OL]. Available at: https://www.itv.rwth-aachen.de/en/downloads/flamemaster/, 1998-07-01.Google Scholar
Pitsch, H. 2006 Large-Eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453482.CrossRefGoogle Scholar
Poinsot, T. & Veynante, D. 2005 Theoretical and Numerical Combustion, 2nd edn. RT Edwards.Google Scholar
Rising, C.J., Morales, A.J., Geikie, M.K. & Ahmed, K.A. 2021 The effects of turbulence and pressure gradients on vorticity transport in premixed bluff-body flames. Phys. Fluids 33 (1), 017106.CrossRefGoogle Scholar
Saghafian, A., Shunn, L., Philips, D.A. & Ham, F. 2015 a Large eddy simulations of the HIFiRE scramjet using a compressible flamelet/progress variable approach. Proc. Combust. Inst. 35, 21632172.CrossRefGoogle Scholar
Saghafian, A., Terrapon, V.E. & Pitsch, H. 2015 b An efficient flamelet-based combustion model for compressible flows. Combust. Flame 162 (3), 652667.CrossRefGoogle Scholar
Segal, C. 2009 The Scramjet Engine: Processes and Characteristics. Cambridge University Press.CrossRefGoogle Scholar
Tang, T., Wang, Z., Huang, Y., Sun, M. & Wang, H. 2022 a Investigation of combustion structure and flame stabilization in an axisymmetric scramjet. AIAA J. 61 (2), 585601.CrossRefGoogle Scholar
Tang, T., Wang, Z., Huang, Y., Sun, M., Wang, H., Zhao, G. & Yu, J. 2023 a Flamelet-like models applied in scramjet combustors: a state of art and prospect. Chin. J. Aeronaut. 36 (10), 2443.CrossRefGoogle Scholar
Tang, T., Wang, Z., Li, H., Huang, Y., Sun, M., Wang, H., Zhao, G. & Yu, J. 2022 b A method for optimizing reaction progress variable and its application. Aerosp. Sci. Technol. 130, 107888.CrossRefGoogle Scholar
Tang, T., Wang, Z., Yu, J., Huang, Y., Sun, M., Wang, H., Zhao, G., Yang, Y. & Xiong, D. 2023 b Numerical study of transverse jet mixing and combustion in a high-enthalpy supersonic crossflow with trace gases. Phys. Fluids 35 (3), 036120.CrossRefGoogle Scholar
Tang, T., Wang, Z., Yu, J., Huang, Y., Sun, M., Wang, H., Zhao, G., Yang, Y. & Xiong, D. 2024 Investigation of multi-scale flow structures and combustion characteristics in a cavity-enhanced circular scramjet. Combust. Flame 264, 113431.CrossRefGoogle Scholar
Tian, Y., Shi, W., Zhong, F. & Le, J. 2021 Pilot hydrogen enhanced combustion in an ethylene-fueled scramjet combustor at Mach 4. Phys. Fluids 33 (1), 015105.CrossRefGoogle Scholar
Tian, Y., Zhu, J., Sun, M., Wang, H., Huang, Y., Feng, R., Yan, B., Sun, Y. & Cai, Z. 2022 Enhancement of blowout limit in a Mach 2.92 cavity-based scramjet combustor by a gliding arc discharge. Proc. Combust. Inst, 5697–5705.Google Scholar
UCSD 2016 Chemical-kinetic mechanisms for combustion applications mechanical and aerospace engineering. In Combustion Research [EB/OL]. University of California. Available at: https://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html, 2016-08-15.Google Scholar
Urzay, J. 2018 Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid Mech. 50 (1), 593627.CrossRefGoogle Scholar
Vanyai, T., Grieve, S., Street, O., Denman, Z., Mcintyre, T., Veeraragavan, A., Wheatley, V. & Smart, M. 2019 Fundamental scramjet combustion experiments using hydrocarbon fuel. J. Propul. Power 35 (5), 111.CrossRefGoogle Scholar
Vanyai, T., Landsberg, W.O., Mcintyre, T.J. & Veeraragavan, A. 2021 OH visualization of ethylene combustion modes in the exhaust of a fundamental, supersonic combustor. Combust. Flame 226, 143155.CrossRefGoogle Scholar
Vincent-Randonnier, A., Sabelnikov, V., Ristori, A., Zettervall, N. & Fureby, C. 2019 An experimental and computational study of hydrogen-air combustion in the LAPCAT II supersonic combustor. Proc. Combust. Inst. 37 (3), 37033711.CrossRefGoogle Scholar
Wan, M., Zhu, J., Sun, M., Zheng, S., Zhou, B., Huang, Y., Wang, H., Liu, Y., Wu, G. & Wang, Z. 2023 Strategy for instantaneous formaldehyde (CH2O) imaging by planar laser-induced fluorescence (PLIF) in a scramjet with intense flame emissions. Combust. Flame 254, 112856.CrossRefGoogle Scholar
Wang, H., He, Z., Tang, T., Li, F., Tian, Y., Wan, M., Zhu, J. & Sun, M. 2023 Visualization of supersonic combustion using high-speed camera/dual-component planar laser-induced fluorescence simultaneous diagnostic technique. Phys. Fluids 35 (9), 096108.CrossRefGoogle Scholar
Yan, B., Sun, M., Tang, T., Li, Y., Wang, L., Yang, X., Li, Q., Tian, Y., Chen, S. & Zhu, J. 2024 Flameholding characteristics of a circular scramjet combustor with an asymmetric supersonic inflow. Proc. Combust. Inst. 40 (1), 105306.CrossRefGoogle Scholar
Yoshizawa, A. & Horiuti, K. 1985 A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows. J. Phys. Soc. Japan 54 (8), 28342839.CrossRefGoogle Scholar
Zhao, M., Li, Q. & Ye, T. 2021 Investigation of an optimal pulsed jet mixing and combustion in supersonic crossflow. Combust. Flame 227, 186201.CrossRefGoogle Scholar
Supplementary material: File

Tang et al. supplementary movie

The calculated instantaneous temperature distribution with flow structures depicted in the background
Download Tang et al. supplementary movie(File)
File 8.3 MB