Hostname: page-component-669899f699-qzcqf Total loading time: 0 Render date: 2025-04-27T20:29:12.909Z Has data issue: false hasContentIssue false

Essential oils as a strategy to improve gut histomorphometry and performance of broilers: systematic review and meta-analysis

Published online by Cambridge University Press:  06 November 2024

Roberto Felipe Rocha
Affiliation:
Department of Animal Science, Federal Rural University of the Semi-Arid Region, Mossoró, Brazil
Pedro Henrique da Silva Fidelis
Affiliation:
Department of Animal Science, Federal Rural University of the Semi-Arid Region, Mossoró, Brazil
Andreia Massuquetto
Affiliation:
Tectron – Innovation and Technology, Toledo, Brazil
Sérgio Turra Sobrane Filho
Affiliation:
Department of Animal Science, Federal University of Lavras, Minas Gerais, Brazil
Marcelle Santana de Araújo
Affiliation:
Department of Animal Science, Federal Rural University of the Semi-Arid Region, Mossoró, Brazil
Camilla Mendonça Silva
Affiliation:
Department of Animal Science, Federal Rural University of Pernambuco, Recife, Brazil
Cláudia da Costa Lopes
Affiliation:
Academic Unit Specialized In Agricultural Sciences, Federal University of Rio Grande do Norte, Macaíba, Brazil
Elias Silva de Medeiros
Affiliation:
Federal University of Grande Dourados, Faculty of Exact Sciences and Technology, Dourados, Brazil
Rennan Herculano Rufino Moreira*
Affiliation:
Department of Animal Science, Federal Rural University of the Semi-Arid Region, Mossoró, Brazil
*
Corresponding author: Rennan Herculano Rufino Moreira; Email: [email protected]

Abstract

The interest in the search for alternatives to antibiotics in poultry production has been increasing, especially with the focus on essential oils due to their remarkable bioactive properties. This study aimed to investigate the effects of dietary supplementation of essential oils on the performance and gut morphometry of broilers, by using an approach of systematic review and meta-analysis. In the conduction of the systematic review, three electronic databases (PubMed, Science Direct and Scielo) were consulted in January 2023. Out of an initial amount of 162 papers, only 27 met the requisites to be included in the database. Furthermore, after the use of established criteria for the meta-analysis, only 16 papers were qualified for the evaluation of the aimed parameters. In the meta-analysis, it was observed that the supplementation had significant impact (P < 0.05) of 2.88% in weight gain, in comparison to the basal diet. In addition, the supplementation of essential oils significantly improved (P < 0.05) gut morphometry parameters such as villus height in the ileum (15.66% higher), and 8.26% increase in the villus height to crypt depth ratio in jejunum compared to the basal diet. Dietary essential oils improve the growth performance and gut histomorphometry of broilers, even when combined with antibiotics as growth promoters.

Type
Animal Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abd El-Hack, ME, El-Saadony, MT, Saad, AM, Salem, HM, Ashry, NM, Abo Ghanima, MM, Shukry, M, Swelum, AA, Taha, AE, El-Tahan, AM, AbuQamar, SF and El-Tarabily, KA (2022) Essential oils and their nanoemulsions as green alternatives to antibiotics in poultry nutrition: a comprehensive review. Poultry Science 101, 101584.CrossRefGoogle Scholar
Aburto, LC, Tavares, DdeQ and Martucci, ET (1998) Microencapsulação de óleo essencial de laranja. Ciência e Tecnologia de Alimentos 18, 4548.CrossRefGoogle Scholar
Adedokun, SA and Olojede, OC (2019) Optimizing gastrointestinal integrity in poultry: the role of nutrients and feed additives. Frontiers in Veterinary Science 5, 348.CrossRefGoogle ScholarPubMed
Akbarian, A, Golian, A, Kermanshahi, H, De Smet, S and Michiels, J (2015) Antioxidant enzyme activities, plasma hormone levels and serum metabolites of finishing broiler chickens reared under high ambient temperature and fed lemon and orange peel extracts and Curcuma xanthorrhiza essential oil. Journal of Animal Physiology and Animal Nutrition 99, 150162.CrossRefGoogle ScholarPubMed
Amerah, AM, Péron, A, Zaefarian, F and Ravindran, V (2011) Influence of whole wheat inclusion and a blend of essential oils on the performance, nutrient utilisation, digestive tract development and ileal microbiota profile of broiler chickens. British Poultry Science 52, 124132.CrossRefGoogle Scholar
Arifin, J (2016) Microsoft Office Excel 2016 untuk Profesional. Elex Media Komputindo. R Core Team. The R Project for Statistical Computing. Available from: https://www.r-project.org/.Google Scholar
Balduzzi, S, Rücker, G and Schwarzer, G (2019) How to perform a meta-analysis with R: a practical tutorial. Evidence Based Mental Health 22, 153160.CrossRefGoogle Scholar
Barbarestani, SY, Jazi, V, Mohebodini, H, Ashayerizadeh, A, Shabani, A and Toghyani, M (2020) Effects of dietary lavender essential oil on growth performance, intestinal function, and antioxidant status of broiler chickens. Livestock Science 233, 103958.CrossRefGoogle Scholar
Basmacioğlu Malayoğlu, H, Baysal, Ş, Misirlioğlu, Z, Polat, M, Yilmaz, H and Turan, N (2010) Effects of oregano essential oil with or without feed enzymes on growth performance, digestive enzyme, nutrient digestibility, lipid metabolism and immune response of broilers fed on wheat–soybean meal diets. British Poultry Science 51, 6780.CrossRefGoogle ScholarPubMed
Baurhoo, B, Ferket, PR and Zhao, X (2009) Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broilers. Poultry Science 88, 22622272.CrossRefGoogle ScholarPubMed
Bona, TDMM, Pickler, L, Miglino, LB, Kuritza, LN, Vasconcelos, SP and Santin, E (2012) Óleo essencial de orégano, alecrim, canela e extrato de pimenta no controle de Salmonella, Eimeria e Clostridium em frangos de corte. Pesquisa Veterinária Brasileira 32, 411418.CrossRefGoogle Scholar
Celi, P, Cowieson, AJ, Fru-Nji, F, Steinert, RE, Kluenter, A-M and Verlhac, V (2017) Gastrointestinal functionality in animal nutrition and health: new opportunities for sustainable animal production. Animal Feed Science and Technology 234, 88100.CrossRefGoogle Scholar
Cetin, E, Yibar, A, Yesilbag, D, Cetin, I and Cengiz, SS (2016) The effect of volatile oil mixtures on the performance and ileo-caecal microflora of broiler chickens. British Poultry Science 57, 780787.CrossRefGoogle Scholar
Chouhan, S, Sharma, K and Guleria, S (2017) Antimicrobial activity of some essential oils – present status and future perspectives. Medicines 4, 58.CrossRefGoogle ScholarPubMed
Chowdhury, S, Mandal, GP, Patra, AK, Kumar, P, Samanta, I, Pradhan, S and Samanta, AK (2018) Different essential oils in diets of broiler chickens: 2. Gut microbes and morphology, immune response, and some blood profile and antioxidant enzymes. Animal Feed Science and Technology 236, 3947.CrossRefGoogle Scholar
Cross, DE, McDevitt, RM, Hillman, K and Acamovic, T (2007) The effect of herbs and their associated essential oils on performance, dietary digestibility and gut microflora in chickens from 7 to 28 days of age. British Poultry Science 48, 496506.CrossRefGoogle ScholarPubMed
Davoodi, P, Ehsani, A, Vaez Torshizi, R and Masoudi, AA (2022) A meta-analysis comparing the composition and quality differences between chicken meats produced under the free-range and conventional systems. World's Poultry Science Journal 78, 353375.CrossRefGoogle Scholar
Devi, KP, Nisha, SA, Sakthivel, R and Pandian, SK (2010) Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology 130, 107115.CrossRefGoogle Scholar
Ding, Y, Hu, Y, Yao, X, He, Y, Chen, J, Wu, J, Wu, S, Zhang, H, He, X and Song, Z (2022) Dietary essential oils improves the growth performance, antioxidant properties and intestinal permeability by inhibiting bacterial proliferation, and altering the gut microbiota of yellow-feather broilers. Poultry Science 101, 102087.CrossRefGoogle ScholarPubMed
do Carmo, EL, Fernandes, RVdeB and Borges, SV (2015) Microencapsulação por spray drying, novos biopolímeros e aplicações na tecnologia de alimentos. The Journal of Engineering and Exact Sciences 1, 3044.Google Scholar
Donsì, F and Ferrari, G (2016) Essential oil nanoemulsions as antimicrobial agents in food. Journal of Biotechnology 233, 106120.CrossRefGoogle ScholarPubMed
Dorman, HJD and Deans, SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology 88, 308316.CrossRefGoogle ScholarPubMed
Du, E, Wang, W, Gan, L, Li, Z, Guo, S and Guo, Y (2016) Effects of thymol and carvacrol supplementation on intestinal integrity and immune responses of broiler chickens challenged with Clostridium perfringens. Journal of Animal Science and Biotechnology 7, 110.CrossRefGoogle ScholarPubMed
Emami, NK, Samie, A, Rahmani, HR and Ruiz-Feria, CA (2012) The effect of peppermint essential oil and fructooligosaccharides, as alternatives to virginiamycin, on growth performance, digestibility, gut morphology and immune response of male broilers. Animal Feed Science and Technology 175, 5764.CrossRefGoogle Scholar
García, V, Catalá-Gregori, P, Hernández, F, Megías, MD and Madrid, J (2007) Effect of formic acid and plant extracts on growth, nutrient digestibility, intestine mucosa morphology, and meat yield of broilers. Journal of Applied Poultry Research 16, 555562.CrossRefGoogle Scholar
Giannenas, I, Bonos, E, Skoufos, I, Tzora, A, Stylianaki, I, Lazari, D, Tsinas, A, Christaki, E and Florou-Paneri, P (2018) Effect of herbal feed additives on performance parameters, intestinal microbiota, intestinal morphology and meat lipid oxidation of broiler chickens. British Poultry Science 59, 545553.CrossRefGoogle ScholarPubMed
Han, X, Parker, TL and Dorsett, J (2017) An essential oil blend significantly modulates immune responses and the cell cycle in human cell cultures. Cogent Biology 3, 1340112.CrossRefGoogle Scholar
Hashemipour, H, Kermanshahi, H, Golian, A and Veldkamp, T (2013) Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens. Poultry Science 92, 20592069.CrossRefGoogle ScholarPubMed
Hashemipour, H, Kermanshahi, H, Golian, A and Khaksar, V (2014) Effects of carboxy methyl cellulose and thymol+carvacrol on performance, digesta viscosity and some blood metabolites of broilers. Journal of Animal Physiology and Animal Nutrition 98, 672679.CrossRefGoogle ScholarPubMed
Heydarian, M, Ebrahimnezhad, Y, Meimandipour, A, Hosseini, S and Banabazi, M (2020) Effects of dietary inclusion of the encapsulated thyme and oregano essential oils mixture and probiotic on growth performance, immune response and intestinal morphology of broiler chickens. Poultry Science Journal 8, 1725.Google Scholar
Holkem, AT, Codevilla, CF and Menezes, CRde (2015). Emulsificação/gelificação iônica interna: alternativa para microencapsulação de compostos bioativos. Ciência e Natura 37, 116.CrossRefGoogle Scholar
Hong, JC, Steiner, T, Aufy, A and Lien, TF (2012) Effects of supplemental essential oil on growth performance, lipid metabolites and immunity, intestinal characteristics, microbiota and carcass traits in broilers. Livestock Science 144, 253262.CrossRefGoogle Scholar
Huyghebaert, G, Ducatelle, R and Van Immerseel, F (2011) An update on alternatives to antimicrobial growth promoters for broilers. The Veterinary Journal 187, 182188.CrossRefGoogle ScholarPubMed
Irawan, A, Hidayat, C, Jayanegara, A and Ratriyanto, A (2021) Essential oils as growth-promoting additives on performance, nutrient digestibility, cecal microbes, and serum metabolites of broiler chickens: a meta-analysis. Animal Bioscience 34, 14991513.CrossRefGoogle ScholarPubMed
Jamroz, D, Wiliczkiewicz, A, Wertelecki, T, Orda, J and Skorupińska, J (2005) Use of active substances of plant origin in chicken diets based on maize and locally grown cereals. British Poultry Science 46, 485493.CrossRefGoogle ScholarPubMed
Jamroz, D, Wertelecki, T, Houszka, M and Kamel, C (2006) Influence of diet type on the inclusion of plant origin active substances on morphological and histochemical characteristics of the stomach and jejunum walls in chicken. Journal of Animal Physiology and Animal Nutrition 90, 255268.CrossRefGoogle ScholarPubMed
Kim, YS and Ho, SB (2010) Intestinal goblet cells and mucins in health and disease: recent insights and progress. Current Gastroenterology Reports 12, 319330.CrossRefGoogle ScholarPubMed
Kishawy, AT, Amer, SA, Abd El-Hack, ME, Saadeldin, IM and Swelum, AA (2019) The impact of dietary linseed oil and pomegranate peel extract on broiler growth, carcass traits, serum lipid profile, and meat fatty acid, phenol, and flavonoid contents. Asian-Australasian Journal of Animal Sciences 32, 11611171.CrossRefGoogle ScholarPubMed
Krishan, G and Narang, A (2014) Use of essential oils in poultry nutrition: a new approach. Journal of Advanced Veterinary and Animal Research 1, 156162.CrossRefGoogle Scholar
Lee, JW, Kim, DH, Kim, YB, Jeong, SB, Oh, ST, Cho, SY and Lee, KW (2020) Dietary encapsulated essential oils improve production performance of coccidiosis-vaccine-challenged broiler chickens. Animals 10, 481.CrossRefGoogle ScholarPubMed
Liu, Y, Yang, X, Xin, H, Chen, S, Yang, C, Duan, Y and Yang, X (2017) Effects of a protected inclusion of organic acids and essential oils as antibiotic growth promoter alternative on growth performance, intestinal morphology and gut microflora in broilers. Animal Science Journal 88, 14141424.CrossRefGoogle ScholarPubMed
Liu, J, Gao, R, Shi, H, Cong, G, Chen, J, Zhang, X, Shi, D, Cao, L, Wang, X, Zhang, J, Ji, Z, Jing, Z and Feng, L (2020) Development of a rapid immunochromatographic strip test for the detection of porcine epidemic diarrhea virus specific SIgA in colostrum. Journal of Virological Methods 279, 113855.CrossRefGoogle ScholarPubMed
Luquetti, BC (2005) Efeito Da Vacinação Contra Coccidiose Aviária e Da Suplementação de Glutamina Ou Prebiótico Sobre a Mucosa Intestinal Em Frangos. Jaboticabal, São Paulo: Universidade Estadual Paulista.Google Scholar
Mahgoub, SAM, El-Hack, MEA, Saadeldin, IM, Hussein, MA, Swelum, AA and Alagawany, M (2019) Impact of Rosmarinus officinalis cold-pressed oil on health, growth performance, intestinal bacterial populations, and immunocompetence of Japanese quail. Poultry Science 98, 21392149.CrossRefGoogle ScholarPubMed
Maiorka, A (2004) Impacto da saúde intestinal na produtividade avícola. Simpósio Brasil Sul de Avicultura 5, 119129.Google Scholar
McGrath, S, Katzenschlager, S, Zimmer, AJ, Seitel, A, Steele, R and Benedetti, A (2023) Standard error estimation in meta-analysis of studies reporting medians. Statistical Methods in Medical Research 32, 373388.CrossRefGoogle ScholarPubMed
Mehdi, Y, Létourneau-Montminy, MP, Gaucher, ML, Chorfi, Y, Suresh, G, Rouissi, T, Brar, SK, Côté, C, Ramirez, AA and Godbout, S (2018) Use of antibiotics in broiler production: global impacts and alternatives. Animal Nutrition 4, 170178.CrossRefGoogle ScholarPubMed
Mohebodini, H, Jazi, V, Ashayerizadeh, A, Toghyani, M and Tellez-Isaias, G (2021) Productive parameters, cecal microflora, nutrient digestibility, antioxidant status, and thigh muscle fatty acid profile in broiler chickens fed with Eucalyptus globulus essential oil. Poultry Science 100, 100922.CrossRefGoogle ScholarPubMed
Montagne, L, Pluske, JR and Hampson, DJ (2003) A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Animal Feed Science and Technology 108, 95117.CrossRefGoogle Scholar
Moreira, RHR, Perez Palencia, JY, Moita, VHC, Caputo, LSS, Saraiva, A, Andretta, I and de Abreu, MLT (2020) Variability of piglet birth weights: a systematic review and meta-analysis. Journal of Animal Physiology and Animal Nutrition 104, 657666.CrossRefGoogle ScholarPubMed
Moretti, S, Mrakic-Sposta, S, Roncoroni, L, Vezzoli, A, Dellanoce, C, Monguzzi, E, Branchi, F, Ferretti, F, Lombardo, V, Doneda, L, Scricciolo, A and Elli, L (2018) Oxidative stress as a biomarker for monitoring treated celiac disease. Clinical and Translational Gastroenterology 9, 157.CrossRefGoogle ScholarPubMed
Nakagawa, S, Johnson, PCD and Schielzeth, H (2017) The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of The Royal Society Interface 14, 20170213.CrossRefGoogle ScholarPubMed
Page, MJ, McKenzie, JE, Bossuyt, PM, Boutron, I, Hoffmann, TC, Mulrow, CD, Shamseer, L, Tetzlaff, JM, Akl, EA, Brennan, SE, Chou, R, Glanville, J, Grimshaw, JM, Hróbjartsson, A, Lalu, MM, Li, T, Loder, EW, Mayo-Wilson, E, McDonald, S, McGuinness, LA, Stewart, LA, Thomas, J, Tricco, AC, Welch, VA, Whiting, P and Moher, D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. British Medical Journal 372, 19.Google ScholarPubMed
Palencia, JYP, Lemes, MAG, Garbossa, CAP, Abreu, MLT, Pereira, LJ and Zangeronimo, MG (2018) Arginine for gestating sows and foetal development: a systematic review. Journal of Animal Physiology and Animal Nutrition 102, 204213.CrossRefGoogle ScholarPubMed
Peng, QY, Li, JD, Li, Z, Duan, ZY and Wu, YP (2016) Effects of dietary supplementation with oregano essential oil on growth performance, carcass traits and jejunal morphology in broiler chickens. Animal Feed Science and Technology 214, 148153.CrossRefGoogle Scholar
Pinheiro, J and Bates, D (2006) Mixed-effects Models in S and S-PLUS. Berlim, Alemanha: Springer science & business media.Google Scholar
Shirani, V, Jazi, V, Toghyani, M, Ashayerizadeh, A, Sharifi, F and Barekatain, R (2019) Pulicaria gnaphalodes powder in broiler diets: consequences for performance, gut health, antioxidant enzyme activity, and fatty acid profile. Poultry Science 98, 25772587.CrossRefGoogle ScholarPubMed
Su, G, Zhou, X, Wang, Y, Chen, D, Chen, G, Li, Y and He, J (2018) Effects of plant essential oil supplementation on growth performance, immune function and antioxidant activities in weaned pigs. Lipids in Health and Disease 17, 110.CrossRefGoogle ScholarPubMed
Su, G, Zhou, X, Wang, Y, Chen, D, Chen, G, Li, Y and He, J (2020) Dietary supplementation of plant essential oil improves growth performance, intestinal morphology and health in weaned pigs. Journal of Animal Physiology and Animal Nutrition 104, 579589.CrossRefGoogle ScholarPubMed
Su, G, Wang, L, Zhou, X, Wu, X, Chen, D, Yu, B, Huang, Z, Luo, Y, Mao, X, Zheng, P, Yu, J, Luo, J and He, J (2021) Effects of essential oil on growth performance, digestibility, immunity, and intestinal health in broilers. Poultry Science 100, 101242.CrossRefGoogle ScholarPubMed
Trombetta, D, Castelli, F, Sarpietro, MG, Venuti, V, Cristani, M, Daniele, C, Saija, A, Mazzanti, G and Bisignano, G (2005) Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy 49, 24742478.CrossRefGoogle ScholarPubMed
Tsirtsikos, P, Fegeros, K, Kominakis, A, Balaskas, C and Mountzouris, KC (2012) Modulation of intestinal mucin composition and mucosal morphology by dietary phytogenic inclusion level in broilers. Animal: An International Journal of Animal Bioscience 6, 10491057.CrossRefGoogle ScholarPubMed
Wade, MR, Manwar, SJ, Kuralkar, SV, Waghmare, SP, Ingle, VC and Hajare, SW (2018) Effect of thyme essential oil on performance of broiler chicken. Journal of Entomology and Zoology Studies 6, 2528.Google Scholar
Windisch, W, Schedle, K, Plitzner, C and Kroismayr, A (2008) Use of phytogenic products as feed additives for swine and poultry. Journal of Animal Science 86, 140148.CrossRefGoogle ScholarPubMed
Xue, J, Shen, K, Hu, Y, Hu, Y, Kumar, V, Yang, G and Wen, C (2020) Effects of dietary Bacillus cereus, B. subtilis, Paracoccus marcusii, and Lactobacillus plantarum supplementation on the growth, immune response, antioxidant capacity, and intestinal health of juvenile grass carp (Ctenopharyngodon idellus). Aquaculture Reports 17, 100387.CrossRefGoogle Scholar
Yang, Y, Zhao, L, Shao, Y, Liao, X, Zhang, L, Lu, L and Luo, X (2019) Effects of dietary graded levels of cinnamon essential oil and its combination with bamboo leaf flavonoid on immune function, antioxidative ability and intestinal microbiota of broilers. Journal of Integrative Agriculture 18, 21232132.CrossRefGoogle Scholar
Zhai, H, Liu, H, Wang, S, Wu, J and Kluenter, AM (2018) Potential of essential oils for poultry and pigs. Animal Nutrition 4, 179186.CrossRefGoogle ScholarPubMed
Zhang, LY, Peng, QY, Liu, YR, Ma, QG, Zhang, JY, Guo, YP, Xue, Z and Zhao, LH (2021) Effects of oregano essential oil as an antibiotic growth promoter alternative on growth performance, antioxidant status, and intestinal health of broilers. Poultry Science 100, 101163.CrossRefGoogle Scholar