Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T06:24:33.896Z Has data issue: false hasContentIssue false

Pieri rules for skew dual immaculate functions

Published online by Cambridge University Press:  29 April 2024

Elizabeth Niese
Affiliation:
Department of Mathematics and Physics, Marshall University, Huntington, WV 25755, United States e-mail: [email protected]
Sheila Sundaram
Affiliation:
School of Mathematics, University of Minnesota–Twin Cities, Minneapolis, MN 55455, United States e-mail: [email protected] [email protected]
Stephanie van Willigenburg*
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
Shiyun Wang
Affiliation:
School of Mathematics, University of Minnesota–Twin Cities, Minneapolis, MN 55455, United States e-mail: [email protected] [email protected]
Rights & Permissions [Opens in a new window]

Abstract

In this paper, we give Pieri rules for skew dual immaculate functions and their recently discovered row-strict counterparts. We establish our rules using a right-action analogue of the skew Littlewood–Richardson rule for Hopf algebras of Lam–Lauve–Sottile. We also obtain Pieri rules for row-strict (dual) immaculate functions.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NC
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial licence (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Canadian Mathematical Society

1 Introduction

Schur-like functions are a new and flourishing area since the discovery of quasisymmetric Schur functions in 2011 [Reference Haglund, Luoto, Mason and van Willigenburg11], which led to numerous other similar functions being discovered, for example, [Reference Aliniaeifard, Li and van Willigenburg1, Reference Assaf and Searles4, Reference Berg, Bergeron, Saliola, Serrano and Zabrocki6, Reference Campbell, Feldman, Light, Shuldiner and Xu10, Reference Luoto, Mykytiuk and van Willigenburg14Reference Mason and Remmel17]. In essence, Schur-like functions are functions that refine the ubiquitous Schur functions and reflect many of their properties, such as their combinatorics [Reference Allen, Hallam and Mason2, Reference Bessenrodt, Luoto and van Willigenburg9], their representation theory [Reference Bardwell and Searles5, Reference Berg, Bergeron, Saliola, Serrano and Zabrocki7, Reference Searles21, Reference Tewari and van Willigenburg22], and in the case of quasisymmetric Schur functions have already been applied to resolve conjectures [Reference Lauve and Mason13]. Of the various Schur-like functions to arise after the quasisymmetric Schur functions, two were naturally related to them: the dual immaculate functions [Reference Berg, Bergeron, Saliola, Serrano and Zabrocki6] and the row-strict quasisymmetric Schur functions [Reference Mason and Remmel17]. Recently, a fourth basis that interpolates between these latter two bases, the row-strict dual immaculate functions, was discovered [Reference Niese, Sundaram, van Willigenburg, Vega and Wang19], thus completing the picture. The representation theory of these functions was revealed in [Reference Niese, Sundaram, van Willigenburg, Vega and Wang20], in addition to the fundamental combinatorics in [Reference Niese, Sundaram, van Willigenburg, Vega and Wang19]. In this paper, we extend the combinatorics to uncover skew Pieri rules in the spirit of [Reference Assaf and McNamara3, Reference Lam, Lauve and Sottile12, Reference Tewari and van Willigenburg23] for both row-strict and classical dual immaculate functions.

More precisely, our paper is structured as follows. In Section 2, we establish a right-action analogue of [Reference Lam, Lauve and Sottile12, Theorem 2.1] in Theorem 2.6. We then recall required background for the Hopf algebras of quasisymmetric functions, $\operatorname {QSym}$ , and noncommutative symmetric functions, $\operatorname {NSym}$ , in Section 3. Finally, in Section 4, we give (left) Pieri rules for row-strict immaculate functions and row-strict dual immaculate functions in Corollaries 4.3 and 4.5, respectively. Our final theorem is Theorem 4.7, in which we establish Pieri rules for skew dual immaculate functions, and row-strict skew dual immaculate functions.

2 The right-action skew Littlewood–Richardson rule for Hopf algebras

We begin by recalling and deducing general Hopf algebra results that will be useful later. Following Tewari and van Willigenburg [Reference Tewari and van Willigenburg23], let H and $H^{*}$ be a pair of dual Hopf algebras over a field k with duality pairing $\langle\hspace{2pt} ,\hspace{2pt} \rangle : H \otimes H^{*} \rightarrow k$ for which the structure of $H^{*}$ is dual to that of H and vice versa. Let $h\in H, a\in H^{*}$ . By Sweedler notation, we have coproduct denoted by $\Delta h=\sum h_1\otimes h_2$ , and similarly $h_1h_2 = h_1\cdot h_2$ denotes product. We define the action of one algebra on the other one by the following:

(2.1) $$ \begin{align} h\rightharpoonup a=\sum\langle h, a_2\rangle a_1, \end{align} $$
(2.2) $$ \begin{align} a\rightharpoonup h=\sum\langle h_2, a\rangle h_1. \end{align} $$

Let $S:H\rightarrow H$ denote the antipode map. Then for $\Delta h= \sum h_1\otimes h_2$ ,

(2.3) $$ \begin{align} \sum(Sh_1)h_2=\varepsilon(h)1_H=\sum h_1(Sh_2), \end{align} $$

where $\varepsilon $ and $1$ denote counit and unit, respectively. Following Montgomery [Reference Montgomery18], we can define the convolution product $*$ for f and g in H by

$$\begin{align*}(f * g)(a)=\sum \langle f,a_1\rangle \langle g,a_2\rangle =\langle fg,a\rangle.\end{align*}$$

Then it follows that

$$\begin{align*}\langle g,f\rightharpoonup a\rangle=\langle gf,a\rangle.\end{align*}$$

Similarly, $\langle a\rightharpoonup f,b\rangle = \langle f,ba\rangle .$ Since $H^{*}$ is a left H-module algebra under $\rightharpoonup $ , we have that

$$\begin{align*}h\rightharpoonup(a\cdot b)=\sum (h_1\rightharpoonup a)\cdot(h_2\rightharpoonup b).\end{align*}$$

Lemma 2.1 [Reference Lam, Lauve and Sottile12]

For $g,h\in H$ and $a\in H^{*}$ ,

$$\begin{align*}(a\rightharpoonup g)\cdot h=\sum(S(h_2)\rightharpoonup a)\rightharpoonup (g\cdot h_1),\end{align*}$$

where $S: H\rightarrow H$ is the antipode.

As in Montgomery [Reference Montgomery18], define a right action by the following:

(2.4) $$ \begin{align} h\leftharpoonup a=\sum \langle h,a_1\rangle a_2, \end{align} $$
(2.5) $$ \begin{align} a\leftharpoonup h = \sum \langle h_1,a\rangle h_2. \end{align} $$

As before, it follows that $\langle g,f\leftharpoonup a\rangle =\langle fg,a\rangle $ and $\langle a\leftharpoonup f,b\rangle =\langle f,ab\rangle $ .

Lemma 2.2 Let $f \in H$ and $a,b \in H^{*}$ . Then

$$\begin{align*}f\leftharpoonup (a\cdot b)= \sum (f_1\leftharpoonup a)\cdot (f_2 \leftharpoonup b).\end{align*}$$

Proof Let $f,g \in H$ and $a,b \in H^{*}$ . Then

$$ \begin{align*} \langle g,f\leftharpoonup (a\cdot b)\rangle &= \langle fg,ab\rangle \\ &=\langle a \leftharpoonup (fg),b\rangle\\ &=\sum\langle f_1g_1,a\rangle \langle f_2g_2,b\rangle\\ &=\sum \langle g_1,f_1\leftharpoonup a\rangle \langle g_2,f_2\leftharpoonup b\rangle \\ &=\sum \langle g, (f_1\leftharpoonup a)\cdot (f_2\leftharpoonup b)\rangle. \end{align*} $$

Thus, $f \leftharpoonup (a\cdot b) = \sum (f_1\leftharpoonup a)\cdot (f_2\leftharpoonup b)$ .

Lemma 2.3 Let $a \in H^{*}$ . Then

$$\begin{align*}\varepsilon(h)\cdot 1_H \leftharpoonup a = a\end{align*}$$

for any $h \in H$ .

Proof Let $a \in H^{*}$ and $h\in H$ . Then

$$\begin{align*}\varepsilon(h)\cdot 1_H \leftharpoonup a = \sum \langle \varepsilon(h)\cdot 1_H,a_1\rangle a_2. \end{align*}$$

This is only nonzero when $a_1=1_{H^{*}}$ .

Lemma 2.4 Let $h \in H$ and $a,b \in H^{*}$ . Then

$$\begin{align*}a\cdot(h\leftharpoonup b) = \sum h_1 \leftharpoonup ( (S(h_2)\leftharpoonup a)\cdot b).\end{align*}$$

Proof Expand the sum using Lemma 2.2 and coassociativity, $(\Delta \otimes 1)\circ \Delta (h) = (1\otimes \Delta )\circ \Delta (h) = \sum h_1\otimes h_2\otimes h_3$ , to get

$$ \begin{align*} \sum h_1 \leftharpoonup ( (S(h_2)\leftharpoonup a)\cdot b)&=\sum (h_1\leftharpoonup (S(h_2)\leftharpoonup a))\cdot (h_3\leftharpoonup b)\\ &=\sum(h_1\cdot S(h_2)\leftharpoonup a) \cdot (h_3\leftharpoonup b) \text{ since } H^{*} \text{ is an } H\text{-module}\\ &=((\varepsilon(h)\cdot 1_H)\leftharpoonup a) \cdot (h\leftharpoonup b) \text{ by ({2.3})}\\ &=a \cdot (h\leftharpoonup b) \text{ by Lemma~{2.3}}. \\[-36pt] \end{align*} $$

Lemma 2.5 Let $g,h \in H$ and $a \in H^{*}$ . Then

$$\begin{align*}h\cdot (a\leftharpoonup g) = \sum (S(h_2) \leftharpoonup a) \leftharpoonup (h_1\cdot g).\end{align*}$$

Proof Let $g,h \in H$ and $a,b \in H^{*}$ . Then

$$ \begin{align*} \langle h\cdot (a\leftharpoonup g),b\rangle &= \langle a\leftharpoonup g, h\leftharpoonup b\rangle \\ &= \langle g,a\cdot (h\leftharpoonup b)\rangle\\ &=\left \langle g, \sum(h_1\leftharpoonup ((S(h_2)\leftharpoonup a)\cdot b)\right\rangle \text{ by Lemma {2.4}}\\ &=\sum \langle g,h_1\leftharpoonup ((S(h_2)\leftharpoonup a)\cdot b)\rangle\\ &=\sum\langle h_1\cdot g,(S(h_2)\leftharpoonup a)\cdot b \rangle\\ &=\sum \langle (S(h_2)\leftharpoonup a)\leftharpoonup (h_1\cdot g), b\rangle. \\[-35pt] \end{align*} $$

We can use the right action to obtain an algebraic Littlewood–Richardson formula analogous to [Reference Lam, Lauve and Sottile12, Theorem 2.1] for those bases whose skew elements appear as the right tensor factor in the coproduct.

Let $\{L_\alpha \} \subset H$ and $\{R_\beta \} \subset H^{*}$ be dual bases with indexing set $\mathcal {P}$ . Then

(2.6) $$ \begin{align} L_\alpha \cdot L_\beta = \sum_{\gamma}b^\gamma_{\alpha,\beta}L_\gamma & \qquad \Delta(L_\gamma) = \sum_{\alpha,\beta} c^\gamma_{\alpha,\beta} L_\alpha \otimes L_\beta, \end{align} $$
(2.7) $$ \begin{align} R_\alpha\cdot R_\beta = \sum_{\gamma}c^\gamma_{\alpha,\beta}R_\gamma & \qquad \Delta(R_\gamma) = \sum_{\alpha,\beta}b^\gamma_{\alpha, \beta} R_\alpha \otimes R_\beta, \end{align} $$

where $b^\gamma _{\alpha ,\beta }$ and $c^\gamma _{\alpha ,\beta }$ are structure constants. We can also write

(2.8) $$ \begin{align} \Delta(L_\gamma) = \sum_{\delta} L_\delta \otimes L_{\gamma/\delta} \qquad \Delta(R_\gamma) = \sum_{\delta} R_\delta \otimes R_{\gamma/\delta}. \end{align} $$

Note that $L_\alpha \leftharpoonup R_\beta = {R_{\beta /\alpha }}$ and $R_\beta \leftharpoonup L_\alpha = L_{\alpha /\beta }$ . Further,

(2.9) $$ \begin{align} \Delta(L_{\alpha/\beta}) = \sum_{\pi,\rho}c^\alpha_{\pi,\rho,\beta} L_\pi \otimes L_\rho \qquad \Delta(R_{\alpha/\beta}) = \sum_{\pi,\rho}b^\alpha_{\pi,\rho,\beta}R_\pi \otimes R_\rho. \end{align} $$

The antipode acts on $L_\rho $ by $S(L_\rho ) = (-1)^{\theta (\rho )}L_{\rho ^{*}}$ where $\theta :\mathcal {P}\rightarrow \mathbb {N}$ and $*:\mathcal {P}\rightarrow \mathcal {P}$ .

Theorem 2.6 For $\alpha , \beta ,\gamma ,\delta \in \mathcal {P}$ ,

$$\begin{align*}L_{\alpha/\beta}\cdot L_{\gamma/\delta} = \sum_{\pi,\rho,\nu,\mu}(-1)^{\theta(\rho)}c^\alpha_{\pi,\rho,\beta}b^\nu_{\pi,\gamma}b^\delta_{\mu,\rho^{*}} L_{\nu/\mu}.\end{align*}$$

Proof We use Lemma 2.5 and the preceding facts about the product, coproduct, and antipode maps on H and $H^{*}$ to obtain

$$ \begin{align*} L_{\alpha/\beta}\cdot L_{\gamma/\delta} & = L_{\alpha/\beta}\cdot (R_\delta \leftharpoonup L_\gamma)\\ &=\sum_{\pi,\rho} c^\alpha_{\pi,\rho,\beta}(S(L_\rho)\leftharpoonup R_\delta) \leftharpoonup (L_\pi\cdot L_\gamma)\\ &= \sum_{\pi,\rho}(-1)^{\theta(\rho)}c^\alpha_{\pi,\rho,\beta}(L_{\rho^{*}} \leftharpoonup R_\delta) \leftharpoonup(L_\pi\cdot L_\gamma)\\ &=\sum_{\pi,\rho}(-1)^{\theta(\rho)}c^\alpha_{\pi,\rho,\beta}\left(R_{\delta/\rho^{*}} \leftharpoonup \left(\sum_{\nu}b^\nu_{\pi,\gamma}L_\nu\right)\right)\\ &=\sum_{\pi,\rho,\nu}(-1)^{\theta(\rho)}c^\alpha_{\pi,\rho,\beta}b^\nu_{\pi,\gamma} (R_{\delta/\rho^{*}}\leftharpoonup L_\nu)\\ &=\sum_{\pi,\rho,\nu,\mu}(-1)^{\theta(\rho)}c^\alpha_{\pi,\rho,\beta}b^\nu_{\pi,\gamma} b^\delta_{\mu,\rho^{*}}(R_\mu\leftharpoonup L_\nu)\\ &=\sum_{\pi,\rho,\nu,\mu}(-1)^{\theta(\rho)}c^\alpha_{\pi,\rho,\beta}b^\nu_{\pi,\gamma} b^\delta_{\mu,\rho^{*}} L_{\nu/\mu}. \\[-42pt] \end{align*} $$

3 The dual Hopf algebras $\operatorname {QSym}$ and $\operatorname {NSym}$

We now focus our attention on the dual Hopf algebra pair of noncommutative symmetric functions and quasisymmetric functions, and introduce our main objects of study the (row-strict) dual immaculate functions.

A composition $\alpha = (\alpha _1, \ldots , \alpha _k)$ of n, denoted by $\alpha \vDash n$ is a list of positive integers such that $\sum _ {i=1} ^{k} \alpha _i = n$ . We call n the size of $\alpha $ and sometimes denote it by $|\alpha |$ , and call k the length of $\alpha $ and sometimes denote it by $\ell (\alpha )$ . If $\alpha _{j_1}= \cdots = \alpha _{j_m} = i$ , we sometimes abbreviate this to $i^m$ , and denote the empty composition of 0 by $\emptyset $ . There exists a natural correspondence between compositions $\alpha \vDash n$ and subsets $S\subseteq \{ 1, \ldots , n-1\} = [n-1]$ . More precisely, $\alpha = (\alpha _1, \ldots , \alpha _k)$ corresponds to $\operatorname {\mathrm {set}} (\alpha ) = \{ \alpha _1, \alpha _1 + \alpha _2, \ldots , \alpha _1 + \cdots +\alpha _{k-1}\}$ , and conversely $S= \{ s_1, \ldots , s_{k-1}\}$ corresponds to $\operatorname {\mathrm {comp}} (S) = ( s_1, s_2 - s_1, \ldots , n- s_{k-1})$ . We also denote by $S^c$ the set complement of S in $[n-1]$ .

Given a composition $\alpha $ , its diagram, also denoted by $\alpha $ , is the array of left-justified boxes with $\alpha _i$ boxes in row i from the bottom. Given two compositions $\alpha , \beta $ we say that $\beta \subseteq \alpha $ if $\beta _j \leq \alpha _j$ for all $1\leq j \leq \ell (\beta ) \leq \ell (\alpha )$ , and given $\alpha , \beta $ such that $\beta \subseteq \alpha $ , the skew diagram $\alpha / \beta $ is the array of boxes in $\alpha $ but not $\beta $ when $\beta $ is placed in the bottom-left corner of $\alpha $ . If, furthermore, $\beta \subseteq \alpha $ and $\alpha _j - \beta _j \in \{ 0,1\}$ for all $1\leq j \leq \ell (\beta )\leq \ell (\alpha ), $ then we call $\alpha / \beta $ a vertical strip.

Example 3.1 If $\alpha = (3,4,1)$ , then $|\alpha |=8, \ell (\alpha ) = 3$ , and $\operatorname {\mathrm {set}} (\alpha ) = \{3,7\}$ . Its diagram is

and if $\beta = (2,4)$ , then

is a vertical strip.

Definition 3.2 Given a composition $\alpha $ , a standard immaculate tableau T of shape $\alpha $ is a bijective filling of its diagram with $1, \ldots , |\alpha |$ such that:

  1. (1) The entries in the leftmost column increase from bottom to top.

  2. (2) The entries in each row increase from left to right.

We obtain a standard skew immaculate tableau of shape $\alpha / \beta $ by extending the definition to skew diagrams $\alpha / \beta $ in the natural way.

Given a standard (skew) immaculate tableau, T, its descent set is

$$ \begin{align*} \operatorname{\mathrm{Des}} (T) = \{ i : i+1 \mbox{ appears strictly above } i \mbox{ in } T \}. \end{align*} $$

Example 3.3 A standard skew immaculate tableau of shape $(3,4,1)/(1)$ is

with $\operatorname {\mathrm {Des}} (T) = \{ 1,5,6 \}$ .

We are now ready to define our Hopf algebras and functions of central interest.

Given a composition $\alpha = ( \alpha _1, \ldots , \alpha _k) \vDash n$ and commuting variables $\{ x_1, x_2, \ldots \}$ we define the monomial quasisymmetric function $M_\alpha $ to be

$$ \begin{align*}M_\alpha = \sum _{i_1 < \cdots < i_k} x_{i_1} ^{\alpha _1} \cdots x_{i_k} ^{\alpha _k}\end{align*} $$

the fundamental quasisymmetric function $F_\alpha $ to be

$$ \begin{align*}F_\alpha = \sum _{i_1 \leq \cdots \leq i_n \atop i_j = i_{j+1} \Rightarrow j \not\in \operatorname{\mathrm{set}}(\alpha)} x_{i_1} \cdots x_{i_n}\end{align*} $$

the dual immaculate function $\mathfrak {S}^{*}_\alpha $ to be

$$ \begin{align*}\mathfrak{S}^{*} _\alpha = \sum _{T} F_{\operatorname{\mathrm{comp}}(\operatorname{\mathrm{Des}}(T))}\end{align*} $$

and the row-strict dual immaculate function $\mathcal {R}\mathfrak {S}^{*} _\alpha $ to be

$$ \begin{align*}\mathcal{R}\mathfrak{S}^{*} _\alpha = \sum _{T} F_{\operatorname{\mathrm{comp}}(\operatorname{\mathrm{Des}}(T)^c),}\end{align*} $$

where the latter two sums are over all standard immaculate tableaux T of shape $\alpha $ . These extend naturally to give skew dual immaculate and row-strict dual immaculate functions $\mathfrak {S}^{*} _{\alpha / \beta }$ [Reference Berg, Bergeron, Saliola, Serrano and Zabrocki6] and $\mathcal {R}\mathfrak {S}^{*} _{\alpha / \beta }$ [Reference Niese, Sundaram, van Willigenburg, Vega and Wang19], where $\alpha / \beta $ is a skew diagram.

Example 3.4 We have that $M_{(2)} = x^2 _1 + x_2 ^2 + x_3 ^2 + \cdots $ and $F_{(2)} = x^2 _1 + x_2 ^2 + x_3 ^2 + \cdots + x_1x_2+x_1x_3+x_2x_3+ \cdots = \mathfrak {S}^{*} _{(2)} = \mathcal {R}\mathfrak {S}^{*} _{(1^2)}$ from the following standard immaculate tableau T with $\operatorname {\mathrm {Des}} (T) = \emptyset $ .

The set of all monomial or fundamental quasisymmetric functions forms a basis for the Hopf algebra of quasisymmetric functions $\operatorname {\mathrm {QSym}}$ , as does the set of all (row-strict) dual immaculate functions. There exists an involutory automorphism $\psi $ defined on fundamental quasisymmetric functions by

$$ \begin{align*}\psi (F_\alpha) = F_{\operatorname{\mathrm{comp}} (\operatorname{\mathrm{set}} (\alpha ^c))}\end{align*} $$

such that [Reference Niese, Sundaram, van Willigenburg, Vega and Wang19]

$$ \begin{align*} \psi (\mathfrak{S}^{*}_\alpha) = \mathcal{R}\mathfrak{S}^{*} _\alpha \end{align*} $$

for a composition $\alpha $ . This extends naturally to skew diagrams $\alpha / \beta $ to give

$$ \begin{align*} \psi (\mathfrak{S}^{*} _{\alpha/\beta}) = \mathcal{R}\mathfrak{S}^{*} _{\alpha/\beta}. \end{align*} $$

Dual to the Hopf algebra of quasisymmetric functions is the Hopf algebra of noncommutative symmetric functions $\operatorname {NSym}$ . Given a composition $\alpha = (\alpha _1, \ldots , \alpha _k) \vDash n$ and noncommuting variables $\{ y_1, y_2, \ldots \}$ we define the nth elementary noncommutative symmetric function $\boldsymbol {e}_n$ to be

$$ \begin{align*} \boldsymbol{e}_n = \sum_{i_1<\cdots < i_n} y_{i_1}\cdots y_{i_n} \end{align*} $$

and the elementary noncommutative symmetric function $\boldsymbol {e}_\alpha $ to be

$$ \begin{align*} \boldsymbol{e}_\alpha = \boldsymbol{e}_{\alpha _1} \cdots \boldsymbol{e}_{\alpha _k}. \end{align*} $$

Meanwhile, we define the nth complete homogeneous noncommutative symmetric function $\boldsymbol {h} _n$ to be

$$ \begin{align*}\boldsymbol{h} _n = \sum _{i_1\leq \cdots \leq i_n}y_{i_1}\cdots y_{i_n} \end{align*} $$

and the complete homogeneous noncommutative symmetric function $\boldsymbol {h} _\alpha $ to be

$$ \begin{align*}\boldsymbol{h}_\alpha = \boldsymbol{h} _{\alpha _1} \cdots \boldsymbol{h} _{\alpha _k}.\end{align*} $$

The set of all elementary or complete homogeneous noncommutative symmetric functions forms a basis for $\operatorname {NSym}$ . The duality between $\operatorname {QSym}$ and $\operatorname {NSym}$ is given by

$$ \begin{align*}\langle M_\alpha , \boldsymbol{h} _\alpha \rangle = \delta _{\alpha\beta,}\end{align*} $$

where $\delta _{\alpha \beta }=1$ if $\alpha = \beta $ and 0 otherwise. This induces the bases dual to the (row-strict) dual immaculate functions via

$$ \begin{align*}\langle \mathfrak{S}^{*} _\alpha , {\mathfrak{S}} _\alpha \rangle = \delta _{\alpha\beta} \qquad \langle \mathcal{R}\mathfrak{S}^{*}_\alpha , \mathcal{R}{\mathfrak{S}} _\alpha \rangle = \delta _{\alpha\beta}\end{align*} $$

and implicitly defines the bases of immaculate and row-strict immaculate functions. While concrete combinatorial definitions of these functions have been established [Reference Berg, Bergeron, Saliola, Serrano and Zabrocki6, Reference Niese, Sundaram, van Willigenburg, Vega and Wang19], we will not need them here. However, what we will need is the involutory automorphism in $\operatorname {NSym}$ corresponding to $\psi $ in $\operatorname {QSym}$ , defined by $\psi (\boldsymbol {e}_\alpha ) = \boldsymbol {h} _\alpha $ that gives $\psi ({\mathfrak {S}} _\alpha ) = \mathcal {R}{\mathfrak {S}} _\alpha $ [Reference Niese, Sundaram, van Willigenburg, Vega and Wang19].

4 The Pieri rules for skew dual immaculate functions

A left Pieri rule for immaculate functions was conjectured in [Reference Berg, Bergeron, Saliola, Serrano and Zabrocki6, Conjecture 3.7] and proved in [Reference Bergeron, Sánchez-Ortega and Zabrocki8]. Given a composition $\alpha = (\alpha _1,\ldots ,\alpha _k),$ we say that $\operatorname {\mathrm {tail}}(\alpha ) = (\alpha _2,\ldots ,\alpha _k)$ . If $\beta \in \mathbb {Z}^k$ , then $\operatorname {\mathrm {neg}}(\alpha -\beta ) = |\{i:\alpha _i-\beta _i<0\}|$ . Let $\operatorname {\mathrm {sgn}}(\beta )=(-1)^{\operatorname {\mathrm {neg}}(\beta )}$ with $\operatorname {\mathrm {neg}}(\beta )=|\{i:\beta _i<0\}|$ .

Following [Reference Bergeron, Sánchez-Ortega and Zabrocki8], we define $Z_{s,\alpha }$ to be a set of all $\beta \in \mathbb {Z}^k$ such that:

  1. (1) $\beta _1+\cdots +\beta _k=s$ and $\beta _1+\cdots +\beta _i\leq s$ for all $i<k$ .

  2. (2) $\alpha _i-\beta _i\geq 0$ for all $1\leq i\leq k$ and $|i:\alpha _i-\beta _i=0|\leq 1$ .

  3. (3) For all $1\leq i\leq k$ ,

    • if $\alpha _i>s-(\beta _1+\cdots +\beta _{i-1}),$ then $ 0\leq \beta _i\leq s-(\beta _1+\cdots +\beta _{i-1}),$

    • if $\alpha _i<s-(\beta _1+\cdots +\beta _{i-1})$ , then $\beta _i<0$ , and

    • if $\alpha _i=s-(\beta _1+\cdots +\beta _{i-1}),$ then either $\beta _i<0$ or $\beta _i=\alpha _i$ and $\beta _{i+1}=\cdots = \beta _k=0$ .

Now we are ready to define the coefficients of the immaculate basis appearing in the left Pieri rule.

Definition 4.1 [Reference Bergeron, Sánchez-Ortega and Zabrocki8]

For a positive integer s and compositions $\alpha , \gamma $ with $|\alpha |-|\gamma |=s$ , let $1\leq j\leq k$ be the smallest integer such that $\alpha _i=\gamma _{i-1}$ for all $j<i\leq k$ where $j=k$ when $\alpha _k\neq \gamma _{k-1}$ . Let $j\leq r\leq k$ be the largest integer such that $\alpha _j<\alpha _{j+1}<\cdots <\alpha _r$ . Let $\alpha ^{(i)} = (\alpha _1,\ldots ,\alpha _i).$ Then define

$$\begin{align*}c^{\gamma}_{s,\alpha}= \left\{\begin{array}{@{}ll}\operatorname{\mathrm{sgn}}(\alpha-\gamma),&\text{if } \ell(\gamma)=\ell(\alpha) \text{ and } \alpha-\gamma\in Z_{s,\alpha},\\ \operatorname{\mathrm{sgn}}(\alpha^{(j-1)}-\gamma^{(j-1)}), & \text{if } \ell(\gamma)=\ell(\alpha)-1,\\ &r-j \text{ is even, and } \\ &(\alpha^{(j-1)}-\gamma^{(j-1)},\alpha_j,0,\ldots,0)\in Z_{s,\alpha}, \\ 0,&\text{otherwise.}\end{array} \right. \end{align*}$$

Theorem 4.2 [Reference Berg, Bergeron, Saliola, Serrano and Zabrocki6, Reference Bergeron, Sánchez-Ortega and Zabrocki8]

Let $m>0$ and $\alpha $ be a composition. Then

$$\begin{align*}\boldsymbol{h}_m{\mathfrak{S}}_\alpha = \sum_{\substack{\beta\vDash |\alpha|+m\\\beta_1\geq m\\0\leq \ell(\beta)-\ell(\alpha)\leq 1}} c^{\operatorname{\mathrm{tail}}(\beta)}_{\beta_1-m, \alpha} {\mathfrak{S}}_\beta. \end{align*}$$

Applying $\psi $ to both sides of the left Pieri rule in Theorem 4.2 immediately yields a left Pieri rule for row-strict immaculate functions.

Corollary 4.3 Let $m>0$ and $\alpha $ be a composition. Then

$$\begin{align*}\boldsymbol{e}_m \mathcal{R}{\mathfrak{S}}_\alpha = \sum_{\substack{\beta\vDash |\alpha|+m\\ \beta_1\geq m\\ 0\leq \ell(\beta)-\ell(\alpha)\leq 1}}c^{\operatorname{\mathrm{tail}}(\beta)}_{\beta_1-m, \alpha} \mathcal{R}{\mathfrak{S}}_\beta. \end{align*}$$

Lemma 3.1 of [Reference Bergeron, Sánchez-Ortega and Zabrocki8] shows that for $s\geq 0$ , $r>0$ and compositions $\alpha ,\beta $ with $|\alpha |=|\beta |+s$ ,

$$\begin{align*}\langle {\mathfrak{S}}_\alpha,{F_{(s)}}\mathfrak{S}^{*}_\beta\rangle=\langle \boldsymbol{h}_r{\mathfrak{S}}_\alpha,\mathfrak{S}^{*}_{(s+r,\beta)}\rangle.\end{align*}$$

This leads to the following Pieri rule for dual immaculate functions.

Theorem 4.4 [Reference Bergeron, Sánchez-Ortega and Zabrocki8]

Let $s>0$ and $\alpha $ be a composition. Then

$$\begin{align*}{F_{(s)}}\mathfrak{S}^{*}_\alpha = \sum_{\substack{\beta\vDash |\alpha|+s\\0\leq \ell(\beta)-\ell(\alpha)\leq 1}} c^{\alpha}_{s,\beta} \mathfrak{S}^{*}_\beta.\end{align*}$$

Again, applying $\psi $ to both sides gives a Pieri rule for row-strict dual immaculate functions.

Corollary 4.5 Let $s>0$ and $\alpha $ be a composition. Then

$$\begin{align*}F_{(1^s)} \mathcal{R}\mathfrak{S}^{*}_\alpha = \sum_{\substack{\beta\vDash |\alpha|+s\\0\leq \ell(\beta)-\ell(\alpha)\leq 1}} c^{\alpha}_{s,\beta} \mathcal{R}\mathfrak{S}^{*}_\beta.\\[-24pt]\end{align*}$$

We use these results together with Hopf algebra computations to construct a Pieri rule for skew dual immaculate functions. Using the map $\psi $ , this also gives a Pieri rule for row-strict skew dual immaculate functions. But first, we have a small, yet crucial, lemma.

Lemma 4.6 Let $\alpha $ and $\gamma $ be compositions. Then ${\mathfrak {S}}_\gamma \leftharpoonup \mathfrak {S}^{*}_\alpha = \mathfrak {S}^{*}_{\alpha /\gamma }$ .

Proof Recall that if $H= \operatorname {\mathrm {QSym}}$ and $H^{*}=\operatorname {\mathrm {NSym}}$ are our pair of dual Hopf algebras, then we know $\Delta \mathfrak {S}^{*}_\alpha =\sum _\beta \mathfrak {S}^{*}_\beta \otimes \mathfrak {S}^{*}_{\alpha /\beta }$ and we have that

$$\begin{align*}{\mathfrak{S}}_\gamma \leftharpoonup \mathfrak{S}^{*}_\alpha = \sum_\beta \langle {\mathfrak{S}}_\gamma , \mathfrak{S}^{*}_\beta \rangle \mathfrak{S}^{*}_{\alpha/\beta} = \mathfrak{S}^{*}_{\alpha/\gamma}\end{align*}$$

since $\langle {\mathfrak {S}}_\gamma , \mathfrak {S}^{*}_\beta \rangle = \delta _{\gamma \beta }$ , where $\delta _{\gamma \beta } = 1$ if $\gamma =\beta $ and 0 otherwise.

We can now give our Pieri rule for (row-strict) skew dual immaculate functions.

Theorem 4.7 Let $\gamma \subseteq \alpha $ . Then

$$\begin{align*}\mathfrak{S}^{*}_{(s)}\mathfrak{S}^{*}_{\alpha/\gamma}=\sum_{\beta/\tau} (-1)^{|\gamma|-|\tau|}\cdot c^{\alpha}_{|\beta|-|\alpha|,\beta}\,\mathfrak{S}^{*}_{\beta/\tau,}\end{align*}$$

and hence by applying $\psi $ to both sides

$$\begin{align*}\mathcal{R}\mathfrak{S}^{*}_{(s)}\mathcal{R}\mathfrak{S}^{*}_{\alpha/\gamma}=\sum_{\beta/\tau} (-1)^{|\gamma|-|\tau|}\cdot c^{\alpha}_{|\beta|-|\alpha|,\beta}\,\mathcal{R}\mathfrak{S}^{*}_{\beta/\tau,}\end{align*}$$

where $|\beta /\tau |=|\alpha /\gamma |+s$ , $\gamma /\tau $ is a vertical strip of length at most s, $\ell (\beta )-\ell (\alpha ) \in \{0,1\}$ and $c^{\alpha }_{|\beta |-|\alpha |,\beta }$ is the coefficient of Definition 4.1. These decompositions are multiplicity-free up to sign.

Proof Note that $\mathfrak {S}^{*}_{(1^s)}=F_{(1^s)}$ and $\mathfrak {S}^{*}_{(s)}=F_{(s)}$ . Recall that

(4.1) $$ \begin{align} \Delta F_\alpha = \sum_{\substack{(\beta,\gamma) \text{ with }\\ \beta\cdot \gamma = \alpha \text{ or}\\ \beta\odot \gamma=\alpha}} F_\beta\otimes F_\gamma, \end{align} $$

where for $\beta = (\beta _1,\ldots , \beta _k)$ and $\gamma = (\gamma _1,\ldots , \gamma _l)$ , $\beta \cdot \gamma = (\beta _1,\ldots , \beta _k,\gamma _1,\ldots , \gamma _l)$ is the concatenation of $\beta $ and $\gamma $ , and $\beta \odot \gamma = (\beta _1, \ldots , \beta _{k-1},\beta _k+\gamma _1,\gamma _2,\ldots , \gamma _l)$ is the near-concatenation of $\beta $ and $\gamma $ .

Then we have that

$$\begin{align*}\Delta(F_{(s)})=\sum_{i=0}^sF_{(i)}\otimes {F_{(s-i)}.} \end{align*}$$

Thus,

$$ \begin{align*} \mathfrak{S}^{*}_{(s)}\mathfrak{S}^{*}_{\alpha/\gamma} &=\mathfrak{S}^{*}_{(s)}({\mathfrak{S}}_\gamma\leftharpoonup\mathfrak{S}^{*}_\alpha)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \text{by Lemma 4.6}\\ &=F_{(s)}({\mathfrak{S}}_\gamma\leftharpoonup\mathfrak{S}^{*}_\alpha) \\ &=\sum_{i=0}^s(S({F_{(s-i)}})\leftharpoonup {\mathfrak{S}}_\gamma)\leftharpoonup({F_{(i)}}\mathfrak{S}^{*}_\alpha)\,\,\,\,\,\,\, \text{by Lemma 2.5.} \\ \end{align*} $$

We first compute ${S(F_{(s-i)})}\leftharpoonup {\mathfrak {S}}_\gamma $ . Since it is well known that $S(F_\alpha )=(-1)^{|\alpha |} F_{\operatorname {\mathrm {comp}}(\operatorname {\mathrm {set}}(\alpha )^c)}$ we have that ${S(F_{(s-i)})=(-1)^{s-i}F_{(1^{s-i})}}$ . Furthermore, we can write the coproduct as

$$\begin{align*}\Delta({\mathfrak{S}}_\gamma)=\sum_{\delta,\tau}b^\gamma_{\delta,\tau}{\mathfrak{S}}_\delta\otimes{\mathfrak{S}}_\tau.\end{align*}$$

Thus,

$$ \begin{align*} S(F_{(s-i)})\leftharpoonup {\mathfrak{S}}_\gamma &=(-1)^{s-i}F_{(1^{s-i})}\leftharpoonup {\mathfrak{S}}_\gamma \\ &=\sum_{\delta,\tau}(-1)^{s-i}b^\gamma_{\delta,\tau}\langle F_{(1^{s-i})}, {\mathfrak{S}}_\delta\rangle{\mathfrak{S}}_\tau \\ &=\sum_{\delta,\tau}(-1)^{s-i}b^\gamma_{\delta,\tau}\langle{\mathfrak{S}}^{*}_{(1^{s-i})}, {\mathfrak{S}}_\delta\rangle{\mathfrak{S}}_\tau \\ &=\sum_{\tau}(-1)^{s-i}b^\gamma_{(1^{s-i}), \tau}{\mathfrak{S}}_\tau. \end{align*} $$

By the definition of product and coproduct on $\operatorname {NSym}$ , we have that

$$\begin{align*}b^\gamma_{\delta,\tau}=\langle \Delta{\mathfrak{S}}_\gamma,\mathfrak{S}^{*}_\delta\otimes\mathfrak{S}^{*}_\tau\rangle=\langle{\mathfrak{S}}_\gamma,\mathfrak{S}^{*}_\delta\cdot\mathfrak{S}^{*}_\tau\rangle{.}\end{align*}$$

To compute this for ${\delta = (1^{s-i}),}$ we use Proposition 3.34 from [Reference Berg, Bergeron, Saliola, Serrano and Zabrocki6] which states that $F^\perp _{(1^r)}{\mathfrak {S}}_\alpha = \sum _\beta {\mathfrak {S}}_\beta $ , where $\beta \in \mathbb {Z}^{\ell (\alpha )}$ , $\alpha _k - \beta _k \in \{0,1\}$ for all k and $|\beta | = |\alpha |-r$ . The operator $F^\perp $ is used throughout [Reference Berg, Bergeron, Saliola, Serrano and Zabrocki6], and has the property that $\langle F^\perp {\mathfrak {S}}_\alpha ,\mathfrak {S}^{*}_\beta \rangle = \langle {\mathfrak {S}}_\alpha ,F \mathfrak {S}^{*}_\beta \rangle $ .

Thus,

$$ \begin{align*} b^\gamma_{(1^{s-i}), \tau} &=\langle {\mathfrak{S}}_\gamma, \mathfrak{S}^{*}_{(1^{s-i})}\mathfrak{S}^{*}_\tau\rangle\\ &=\langle{\mathfrak{S}}_\gamma,F_{(1^{s-i})}\mathfrak{S}^{*}_\tau\rangle\\ &=\langle F^{\perp}_{(1^{s-i})}{\mathfrak{S}}_\gamma, \mathfrak{S}^{*}_\tau\rangle\\ &=\left\langle \sum_{\beta}{\mathfrak{S}}_\beta, \mathfrak{S}^{*}_\tau\right\rangle\\ &=\delta _{\beta \tau}, \end{align*} $$

where the sum is over all $\beta $ such that $\beta \in \mathbb {Z}^{\ell (\gamma )}$ , $\gamma _k - \beta _k \in \{0,1\}$ for all k, and $|\beta |=|\gamma |-{(s-i)}$ .

Then using the above calculations, Theorem 4.4 and Lemma 4.6, we have that

$$ \begin{align*} \mathfrak{S}^{*}_{(s)}\mathfrak{S}^{*}_{\alpha/\gamma} &=\mathfrak{S}^{*}_{(s)}({\mathfrak{S}}_\gamma\leftharpoonup\mathfrak{S}^{*}_\alpha)\\ &=\sum_{i=0}^s\left((S(F_{(s-i)})\leftharpoonup {\mathfrak{S}}_\gamma)\leftharpoonup(F_{(i)}\mathfrak{S}^{*}_\alpha)\right)\\ &=\sum_{i=0}^s \left((-1)^{(s-i)}\sum_{\substack{\tau \in \mathbb{Z}^{\ell(\gamma)}\\\gamma_k-\tau_k \in \{0,1\}\\|\tau|=|\gamma|-(s-i)}} {\mathfrak{S}}_\tau\right)\leftharpoonup \left(\sum_{\substack{\beta\vDash |\alpha|+i\\0\leq\ell(\beta) -\ell(\alpha)\leq 1}} c^{\alpha}_{i,\beta} \mathfrak{S}^{*}_{\beta}\right)\\ &=\sum_{i=0}^s \sum_{\substack{\tau,\beta\\ \tau \in \mathbb{Z}^{\ell(\gamma)}\\\gamma_k-\tau_k\in\{0,1\}\\|\tau|=|\gamma|-(s-i)\\\beta\vDash|\alpha|+i\\ \ell(\beta) - \ell(\alpha) \in \{0,1\}}} (-1)^{(s-i)}\cdot c^{\alpha}_{i,\beta}\, \mathfrak{S}^{*}_{\beta/\tau}\\ &=\sum_{\beta/\tau} (-1)^{|\gamma|-|\tau|}\cdot c^{\alpha}_{|\beta|-|\alpha|,\beta}\,\mathfrak{S}^{*}_{\beta/\tau,} \end{align*} $$

where $|\beta /\tau |=|\alpha /\gamma |+s$ , $\gamma /\tau $ is a vertical strip of length at most s, and $\ell (\beta )-\ell (\alpha ) \in \{0,1\}$ .

Example 4.8 Let us compute $\mathfrak {S}^{*}_{(2)}\cdot \mathfrak {S}^{*}_{(1,2,1)/(1,1)}$ .

First, we need to compute all compositions $\beta \vDash 4+i$ for $i\in \{0,1,2\}$ and $\ell (\beta )=3$ or $4$ . We list all possible choices for $\beta $ as the set

$$ \begin{align*} A=\{&(1,1,1,1),(1,1,2),(1,2,1),(2,1,1),(1,1,1,2),(1,1,2,1),(1,2,1,1),\\ &(2,1,1,1),(1,1,3),(1,2,2),(1,3,1),(2,1,2),(2,2,1),(3,1,1),(1,1,1,3),\\ &(1,1,2,2),(1,1,3,1),(1,2,1,2),(1,2,2,1),(1,3,1,1),(2,1,1,2),\\ &(2,1,2,1),(2,2,1,1),(3,1,1,1),(1,1,4),(1,2,3),(1,3,2),(1,4,1),\\ &(2,1,3),(2,2,2),(2,3,1),(3,1,2),(3,2,1),(4,1,1)\}. \end{align*} $$

Next, we need to find $\tau $ by removing a vertical strip of length at most $s=2$ from $\gamma =(1,1)$ . We list all options for $\tau $ as the set $B=\{\emptyset ,(1),(1,1)\}$ .

By Theorem 4.7, now we expand $\mathfrak {S}^{*}_{(2)}\cdot \mathfrak {S}^{*}_{(1,2,1)/(1,1)}$ by finding all valid pairs $(\beta ,\tau )$ such that $|\beta /\tau |=4$ . Thus,

$$ \begin{align*} \mathfrak{S}^{*}_{(2)}\cdot\mathfrak{S}^{*}_{(1,2,1)/(1,1)} &=c^{(1,2,1)}_{0,(1,1,1,1)}\mathfrak{S}^{*}_{(1,1,1,1)}+c^{(1,2,1)}_{0,(1,1,2)}\mathfrak{S}^{*}_{(1,1,2)}\\ &\quad +c^{(1,2,1)}_{0,(1,2,1)}\mathfrak{S}^{*}_{(1,2,1)} +c^{(1,2,1)}_{0,(2,1,1)}\mathfrak{S}^{*}_{(2,1,1)}\\ &\quad -c^{(1,2,1)}_{1,(1,1,1,2)}\mathfrak{S}^{*}_{(1,1,1,2)/(1)}- c^{(1,2,1)}_{1,(1,1,2,1)}\mathfrak{S}^{*}_{(1,1,2,1)/(1)}\\ &\quad -c^{(1,2,1)}_{1,(1,2,1,1)}\mathfrak{S}^{*}_{(1,2,1,1)/(1)}- c^{(1,2,1)}_{1,(2,1,1,1)}\mathfrak{S}^{*}_{(2,1,1,1)/(1)}\\ &\quad -c^{(1,2,1)}_{1,(1,1,3)}\mathfrak{S}^{*}_{(1,1,3)/(1)} -c^{(1,2,1)}_{1,(1,2,2)}\mathfrak{S}^{*}_{(1,2,2)/(1)}\\ &-c^{(1,2,1)}_{1,(1,3,1)}\mathfrak{S}^{*}_{(1,3,1)/(1)}-c^{(1,2,1)}_{1,(2,1,2)}\mathfrak{S}^{*}_{(2,1,2)/(1)}\\ &-c^{(1,2,1)}_{1,(2,2,1)}\mathfrak{S}^{*}_{(2,2,1)/(1)}- c^{(1,2,1)}_{1,(3,1,1)}\mathfrak{S}^{*}_{(3,1,1)/(1)}\\ &+c^{(1,2,1)}_{2,(1,1,1,3)}\mathfrak{S}^{*}_{(1,1,1,3)/(1,1)}+c^{(1,2,1)}_{2,(1,1,2,2)} \mathfrak{S}^{*}_{(1,1,2,2)/(1,1)}\\&+c^{(1,2,1)}_{2,(1,1,3,1)}\mathfrak{S}^{*}_{(1,1,3,1)/(1,1)}+ c^{(1,2,1)}_{2,(1,2,1,2)}\mathfrak{S}^{*}_{(1,2,1,2)/(1,1)}\\ &+c^{(1,2,1)}_{2,(1,2,2,1)}\mathfrak{S}^{*}_{(1,2,2,1)/(1,1)}+c^{(1,2,1)}_{2,(1,3,1,1)} \mathfrak{S}^{*}_{(1,3,1,1)/(1,1)}\\&+c^{(1,2,1)}_{2,(2,1,1,2)}\mathfrak{S}^{*}_{(2,1,1,2)/(1,1)}+ c^{(1,2,1)}_{2,(2,1,2,1)}\mathfrak{S}^{*}_{(2,1,2,1)/(1,1)}\\ &+c^{(1,2,1)}_{2,(2,2,1,1)}\mathfrak{S}^{*}_{(2,2,1,1)/(1,1)}+c^{(1,2,1)}_{2,(3,1,1,1)} \mathfrak{S}^{*}_{(3,1,1,1)/(1,1)}\\&+c^{(1,2,1)}_{2,(1,1,4)} \mathfrak{S}^{*}_{(1,1,4)/(1,1)}+c^{(1,2,1)}_{2,(1,2,3)} \mathfrak{S}^{*}_{(1,2,3)/(1,1)}\\&+c^{(1,2,1)}_{2,(1,3,2)} \mathfrak{S}^{*}_{(1,3,2)/(1,1)}+c^{(1,2,1)}_{2,(1,4,1)} \mathfrak{S}^{*}_{(1,4,1)/(1,1)}\\ &+c^{(1,2,1)}_{2,(2,1,3)}\mathfrak{S}^{*}_{(2,1,3)/(1,1)}+ c^{(1,2,1)}_{2,(2,2,2)}\mathfrak{S}^{*}_{(2,2,2)/(1,1)}\\ &+c^{(1,2,1)}_{2,(2,3,1)}\mathfrak{S}^{*}_{(2,3,1)/(1,1)}+c^{(1,2,1)}_{2,(3,1,2)}\mathfrak{S}^{*}_{(3,1,2)/(1,1)}\\ &+c^{(1,2,1)}_{2,(3,2,1)}\mathfrak{S}^{*}_{(3,2,1)/(1,1)}+c^{(1,2,1)}_{2,(4,1,1)}\mathfrak{S}^{*}_{(4,1,1)/(1,1)}. \end{align*} $$

We can compute all the coefficients $c^{\alpha }_{|\beta |-|\alpha |,\beta }$ using Definition 4.1, and most of them turn out to be zero. Hence, we have the following expansion after simplification:

$$ \begin{align*} \begin{aligned} \mathfrak{S}^{*}_{(2)}\cdot\mathfrak{S}^{*}_{(1,2,1)/(1,1)} &=\mathfrak{S}^{*}_{(1,2,1)}-\mathfrak{S}^{*}_{(1,1,2,1)/(1)}-\mathfrak{S}^{*}_{(2,2,1)/(1)}+\mathfrak{S}^{*}_{(2,1,2,1)/ (1,1)}\\ &\quad +{\mathfrak{S}^{*}_{(3,2,1)/(1,1).}} \end{aligned} \end{align*} $$

Acknowledgments

The authors would like to thank the Algebraic Combinatorics Research Community program at ICERM for bringing them together.

Footnotes

The third author was supported in part by the National Sciences Research Council of Canada.

References

Aliniaeifard, F., Li, S. X., and van Willigenburg, S., Schur functions in noncommuting variables . Adv. Math. 406(2022), 108536.CrossRefGoogle Scholar
Allen, E., Hallam, J., and Mason, S., Dual immaculate quasisymmetric functions expand positively into Young quasisymmetric Schur functions . J. Combin. Theory Ser. A 157(2018), 70108.CrossRefGoogle Scholar
Assaf, S. and McNamara, P., A Pieri rule for skew shapes . J. Combin. Theory Ser. A 118(2011), 277290.CrossRefGoogle Scholar
Assaf, S. and Searles, D., Kohnert polynomials . Exp. Math. 31(2019), 93119.CrossRefGoogle Scholar
Bardwell, J. and Searles, D., 0-Hecke modules for Young row-strict quasisymmetric Schur functions . European J. Combin. 102(2022), 103494.CrossRefGoogle Scholar
Berg, C., Bergeron, N., Saliola, F., Serrano, L., and Zabrocki, M., A lift of the Schur and Hall–Littlewood bases to non-commutative symmetric functions . Canad. J. Math. 66(2014), 525565.CrossRefGoogle Scholar
Berg, C., Bergeron, N., Saliola, F., Serrano, L., and Zabrocki, M., Indecomposable modules for the dual immaculate basis of quasi-symmetric functions . Proc. Amer. Math. Soc. 143(2015), 9911000.CrossRefGoogle Scholar
Bergeron, N., Sánchez-Ortega, J., and Zabrocki, M., The Pieri rule for dual immaculate quasi-symmetric functions . Ann. Comb. 20(2016), 283300.CrossRefGoogle Scholar
Bessenrodt, C., Luoto, K., and van Willigenburg, S., Skew quasisymmetric Schur functions and noncommutative Schur functions . Adv. Math. 226(2011), 44924532.CrossRefGoogle Scholar
Campbell, J., Feldman, K., Light, J., Shuldiner, P., and Xu, Y., A Schur-like basis of $NSym$ defined by a Pieri rule . Electron. J. Combin. 21(2014), Article no. 3.41, 19 pp.CrossRefGoogle Scholar
Haglund, J., Luoto, K., Mason, S., and van Willigenburg, S., Quasisymmetric Schur functions . J. Combin. Theory Ser. A 118(2011), 463490.CrossRefGoogle Scholar
Lam, T., Lauve, A., and Sottile, F., Skew Littlewood–Richardson rules from Hopf algebras . Int. Math. Res. Not. IMRN 6(2011), 12051219.Google Scholar
Lauve, A. and Mason, S., Qsym over Sym has a stable basis . J. Combin. Theory Ser. A 118(2011), 16611673.CrossRefGoogle Scholar
Luoto, K., Mykytiuk, S., and van Willigenburg, S., An introduction to quasisymmetric Schur functions: Hopf algebras, quasisymmetric functions, and Young composition tableaux, SpringerBriefs in Mathematics, Springer, New York, 2013.CrossRefGoogle Scholar
Mason, S. and Niese, E., Skew row-strict quasisymmetric Schur functions . J. Algebraic Combin. 42(2015), 763791.CrossRefGoogle Scholar
Mason, S. and Niese, E., Quasisymmetric $\left(k,l\right)$ -hook Schur functions . Ann. Comb. 22(2018), 167199.CrossRefGoogle Scholar
Mason, S. and Remmel, J., Row-strict quasisymmetric Schur functions . Ann. Comb. 18(2014), 127148.CrossRefGoogle Scholar
Montgomery, S., Hopf algebras and their actions on rings, American Mathematical Society, Providence, RI, 1993.CrossRefGoogle Scholar
Niese, E., Sundaram, S., van Willigenburg, S., Vega, J., and Wang, S., Row-strict dual immaculate functions . Adv. in Appl. Math. 149(2023), 33 pp.CrossRefGoogle Scholar
Niese, E., Sundaram, S., van Willigenburg, S., Vega, J., and Wang, S., 0-Hecke modules for row-strict dual immaculate functions . Trans. Amer. Math. Soc. 377(2024), 25252582.Google Scholar
Searles, D., Indecomposable $0$ -Hecke modules for extended Schur functions . Proc. Amer. Math. Soc. 148(2020), 19331943.CrossRefGoogle Scholar
Tewari, V. and van Willigenburg, S., Modules of the 0-Hecke algebra and quasisymmetric Schur functions . Adv. Math. 285(2015), 10251065.CrossRefGoogle Scholar
Tewari, V. and van Willigenburg, S., Quasisymmetric and noncommutative skew Pieri rules . Adv. in Appl. Math. 100(2018), 101121.CrossRefGoogle Scholar