Hostname: page-component-669899f699-b58lm Total loading time: 0 Render date: 2025-04-29T03:58:51.054Z Has data issue: false hasContentIssue false

Shadowing and hyperbolicity for linear delay difference equations

Published online by Cambridge University Press:  09 December 2024

Lucas Backes
Affiliation:
Departamento de Matemática, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP 91509-900, Porto Alegre, RS, Brazil ([email protected])
Davor Dragičević*
Affiliation:
Faculty of Mathematics, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia ([email protected]) (corresponding author)
Mihály Pituk
Affiliation:
Department of Mathematics, University of Pannonia, Egyetem út 10, 8200 Veszprém, Hungary; HUN–REN–ELTE Numerical Analysis and Large Networks Research Group, Budapest, Hungary ([email protected])
*
*Corresponding author.

Abstract

It is known that hyperbolic linear delay difference equations are shadowable on the half-line. In this article, we prove the converse and hence the equivalence between hyperbolicity and the positive shadowing property for the following two classes of linear delay difference equations: (a) for non-autonomous equations with finite delays and uniformly bounded compact coefficient operators in Banach spaces and (b) for Volterra difference equations with infinite delay in finite dimensional spaces.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Backes, L. and Dragičević, D.. Shadowing for infinite dimensional dynamics and exponential trichotomies. Proc. Roy. Soc. Edinburgh Sect. A. 151 (2021), 863884CrossRefGoogle Scholar
Backes, L., Dragičević, D. and Pituk, M.. Shadowing, Hyers–Ulam stability and hyperbolicity for nonautonomous linear delay differential equations. Commun. Contemp. Math. (2024), 10.1142/S0219199724500123.Google Scholar
Barreira, L., Dragičević, D. and Valls, C.. Admissibility and hyperbolicity, SpringerBriefs Math. (Springer, Cham, 2018).CrossRefGoogle Scholar
Barreira, L. and Valls, C.. Delay-difference equations and stability. J. Dynam. Differential Equations. (2023), 10.1007/s10884-023-10304-z.Google Scholar
Bernardes, N., Cirilo, P. R., Darji, U. B., Messaoudi, A. and Pujals, E. R.. Expansivity and shadowing in linear dynamics. J. Math. Anal. Appl. 461 (2018), 796816.CrossRefGoogle Scholar
Blumenthal, A. and Morris, I. D.. Characterization of dominated splittings for operator cocycles acting on Banach spaces. J. Differential Equations. 267 (2019), 39774013.CrossRefGoogle Scholar
Bochi, J. and Gourmelon, N.. Some characterization of domination. Math. Z. 263 (2009), 221231.CrossRefGoogle Scholar
Coppel, W. A.. Dichotomies in stability theory. (Springer Verlag, New York, Berlin, Heidelberg, 1978).CrossRefGoogle Scholar
Daleckiı, J. L. and Kreın, M. G.. Stability of solutions of differential equations in Banach space. (Amer. Math. Soc, Providence, RI, 1974).Google Scholar
Dragičević, D. and Pituk, M.. Shadowing for nonautonomous difference equations with infinite delay. Appl. Math. Lett. 120 (2021), .CrossRefGoogle Scholar
Henry, D.. Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840. (Springer, 1981).CrossRefGoogle Scholar
Huy, N. T.. Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line. J. Funct. Anal. 235 (2006), 330354.CrossRefGoogle Scholar
Huy, N. T. and Van Minh, N.. Exponential dichotomy of difference equations and applications to evcolution equations on the half-line. Comput. Math. Appl. 42 (2001), 301311.CrossRefGoogle Scholar
Latushkin, Y., Randolph, T. and Schnaubelt, R.. Exponential dichotomy and mild solution of nonautonomous equations in Banach spaces. J. Dynam. Differential Equations. 10 (1998), 489510.CrossRefGoogle Scholar
Li, T.. Die Stabilitätsfrage bei Differenzengleichungen. Acta Math. 63 (1934), 99141.CrossRefGoogle Scholar
Massera, J. L. and Schäffer, J. J.. Linear differential equations and functional analysis I. Ann. of Math. 67 (1958), 517573.CrossRefGoogle Scholar
Massera, J. L. and Schäffer, J. J.. Linear differential equations and function spaces. Pure and Applied Mathematics 21, (Academic Press, New York and London, 1966).Google Scholar
Matsunaga, H., Murakami, S., Nagabuchi, Y. and Nakano, Y.. Formal adjoint equations and asymptotic formula for solutions of Volterra difference equations with infinite delay. J. Difference Equ. Appl. 18 (2012), 5788.CrossRefGoogle Scholar
Murakami, S.. Representation of solutions of linear functional difference equations in phase space. Nonlinear Anal. 30 (1997), 11531164.CrossRefGoogle Scholar
Nagabuchi, Y.. Decomposition of phase space for Volterra difference equations in a Banach space, Funkcial. Ekvac. 49 (2006), 269290.CrossRefGoogle Scholar
Perron, O.. Die Stabilitätsfrage bei Differentialgleichungen. Math. Z. 32 (1930), 703728.CrossRefGoogle Scholar
Quas, A., Thieullen, P. and Zarrabi, M.. Explicit bounds for separation between Oseledets subspaces. Dyn. Syst. 34 (2019), 517560.CrossRefGoogle Scholar
Rudin, W.. Functional analysis. Second, (McGraw–Hill Inc, New York, 1991) Edition.Google Scholar
Sasu, A. L. and Sasu, B.. Discrete admissibility and exponential trichotomy of dynamical systems, Discrete Contin. Dyn. Syst. 34 (2014), 29292962.Google Scholar
Sasu, A. L. and Sasu, B.. Admissibility and exponential trichotomy of dynamical systems described by skew-product flows. J. Differential Equations. 260 (2016), 16561689.CrossRefGoogle Scholar
Sasu, A. L. and Sasu, B.. Input-output criteria for the trichotomic behaviors of discrete dynamical systems. J. Differential Equations. 351 (2023), 277323.CrossRefGoogle Scholar
Schäffer, J. J.. Linear difference equations: closedness of covariant sequences. Math. Ann. 187 (1970), 6976.CrossRefGoogle Scholar
Taylor, A. E.. Introduction to functional analysis. (John Wiley & Sons, New York, 1958).Google Scholar
Van Minh, N., Räbiger, F. and Schnaubelt, R.. Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half line. Integral Equations Operator Theory. 32 (1998), 332353.CrossRefGoogle Scholar