Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T20:48:01.978Z Has data issue: false hasContentIssue false

Response of Chironomidae to environmental disturbances in a high mountain lake in Patagonia during the last millennium

Published online by Cambridge University Press:  23 April 2019

Natalia Williams*
Affiliation:
Laboratorio de Análisis por Activación Neutrónica (UAIN), Centro Atómico Bariloche, CNEA, Avenida Bustillo km 9.5, 8400 Bariloche, Argentina Centro Científico Tecnológico Patagonia Norte (CONICET), Bariloche, Argentina
Diego Añón Suárez
Affiliation:
Laboratorio de Fotobiologia (CRUB-INIBIOMA), Quintral 1250, 8400 Bariloche, Argentina
Maria Rieradevall
Affiliation:
Grup de Recerca F.E.M. (Freshwater Ecology and Management), Departament d'Ecologia, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, España IRBio (Institut de Recerca de Biodiversitat), Universitat de Barcelona, España
Andrea Rizzo
Affiliation:
Laboratorio de Análisis por Activación Neutrónica (UAIN), Centro Atómico Bariloche, CNEA, Avenida Bustillo km 9.5, 8400 Bariloche, Argentina Centro Científico Tecnológico Patagonia Norte (CONICET), Bariloche, Argentina
Romina Daga
Affiliation:
Laboratorio de Análisis por Activación Neutrónica (UAIN), Centro Atómico Bariloche, CNEA, Avenida Bustillo km 9.5, 8400 Bariloche, Argentina Centro Científico Tecnológico Patagonia Norte (CONICET), Bariloche, Argentina
María A. Arribére
Affiliation:
Laboratorio de Análisis por Activación Neutrónica (UAIN), Centro Atómico Bariloche, CNEA, Avenida Bustillo km 9.5, 8400 Bariloche, Argentina Instituto Balseiro, Universidad Nacional de Cuyo-CNEA, Bariloche, Argentina
Sergio Ribeiro Guevara
Affiliation:
Laboratorio de Análisis por Activación Neutrónica (UAIN), Centro Atómico Bariloche, CNEA, Avenida Bustillo km 9.5, 8400 Bariloche, Argentina
*
*Corresponding author at: Centro Atómico Bariloche, Avenida Bustillo km 9.5, 8400 Bariloche, Río Negro, Argentina. E-mail address: [email protected] (N. Williams).

Abstract

Through the last millennium, Patagonia has been affected by changing climate conditions and successive volcanic eruptions. Lake Tonček is a high-altitude lake in the Southern Volcanic Zone in the northern Patagonian Andes. We documented the responses of the subfossil chironomid community to the effects of successive volcanic and different conditions in a sedimentary sequence from this lake comprising the last 900 years. The community composition and structure (abundance, diversity, and richness) and the development of morphological anomalies in the chironomid mouthparts were evaluated throughout the core. Both climatic conditions and volcanism affected the chironomid community differentially. The chironomid community changed following short-term climate change patterns, being affecting not only by temperature changes but also by variations in the regional precipitation regime. Decreases in abundance and diversity were only observed in coarse volcanic layers. In these samples, we recorded a high percentage of damaged chironomid mouthparts caused by mechanical wear, breakage or abrasion, possibly due to the increase of mineral particles. Our results represent important baseline data about the responses of chironomid communities to environmental disturbances in high-altitude lakes over long time frames.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

+

Deceased 15.10.2015

References

REFERENCES

Araneda, A., Cruces, F., Torres, L., Bertrand, S., Fagel, N., Treutler, H.C., Chirinos, L., Barra, R., Urrutia, R., 2007. Changes of sub-fossil Chironomid assemblages associated with volcanic sediment deposition in an Andean lake (38°S). Revista Chilena de Historia Natural 80,141156.Google Scholar
Ashe, P., Murray, D.A., Reiss, F., 1987. The zoogeographical distribution of Chironomidae (Insecta: Diptera). Annales de Limnologie 23, 2760.Google Scholar
Battarbee, R.W., Grytnes, J.A., Thompson, R., Appleby, P.G., CatalanJ Korhola, A., Birks, H.J.B., Heegaard, E., Lami, A., 2002. Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. Journal of Paleolimnology 28, 161179.Google Scholar
Begon, M., Harper, J.L., Townsend, C.R., 1999. Ecología: Individuos, poblaciones y comunidades. 3rd ed. Ediciones Omega, Barcelona.Google Scholar
Bertrand, S., Boes, X., Castiaux, J., Charlet, F., Urrutia, R., Espinoza, C., Lepoint, G., Charlier, B., Fagel, N., 2005. Temporal evolution of sediment supply in Lago Puyehue (Southern Chile) during the last 600 yr and its climatic significance. Quaternary Research 64, 163175.Google Scholar
Birks, H.J.B., 1998. Numerical tools in palaeolimnology—progress, potentialities, and problems. Journal of Paleolimnology 20, 307332.Google Scholar
Boes, X., Fagel, N., 2008. Relationships between southern Chilean varved lake sediments, precipitation and ENSO for the last 600 years. Journal of Paleolimnology 39, 237252.Google Scholar
Brooks, S.J., Heiri, O., 2013. Response of Chironomid assemblages to environmental change during the early Late-glacial at Gerzensee, Switzerland. Palaeogeography, Palaeoclimatology, Palaeoecology 391, 9098.Google Scholar
Chang, J., Zhang, E., Liu, E., Sun, W., Langdon, P.G., Shulmeister, J., 2018. A 2500-year climate and environmental record inferred from subfossil chironomids from Lugu Lake, southwestern China. Hydrobiologia 811, 193206.Google Scholar
Clarke, K.R., Gorley, R.N., 2005. PRIMER v.6: User Manual/Tutorial. PRIMER-E, Plymouth.Google Scholar
Clarke, K.R., Warwick, R.M., 2001. A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Marine Ecology Progress Series 216, 265278.Google Scholar
Cranston, P.S., 1995. Biogeography. In: Cranston, Armitage P., Pinder, P.S., L.C. (Eds.), The Chironomidae. The Biology and Ecology of Non-Biting Midges. Chapman and Hall, London, pp. 6284.Google Scholar
Cranston, P.S., 2000. Electronic guide to the Chironomidae of Australia. http://entomology.ucdavis.edu/chiropage/index.html.Google Scholar
Coffman, W.B., Ferrington, L.C., 1996. Chironomidae. In: Merrit, W., Cummings, K.W. (Eds.), An Introduction to the Aquatic Insects of North America. Kendall/Hunt Dubuque, Iowa, pp. 551643.Google Scholar
Daga, R., Ribeiro Guevara, S., Sanchez, M.L., Arribere, M., 2008. Source identification of volcanic ashes by geochemical analysis of well-preserved lacustrine tephras in Nahuel Huapi National Park. Applied Radiation and Isotopes 66, 13251336.Google Scholar
Daga, R., Ribeiro Guevara, S., Sanchez, M.L., Arribere, M., 2010. Tephrochronology of Recent events in the Andean Range (Northern Patagonia) spatial Distribution and Provenance of Lacustrine ash layers in the Nahuel Huapi National Park. Journal of Quaternary Science 25, 11131123.Google Scholar
Díaz, M., Pedrozo, A., Reynolds, C., Temporetti, P., 2007. Chemical composition and the nitrogen-regulated trophic state of Patagonian lakes. Limnologica 37, 1727.Google Scholar
DeMaster, D.J., 1981. The supply and accumulation of silica in the marine environment. Geochimica et Cosmochimica Acta 45, 17151732.Google Scholar
Eastwood, W.J., Tibby, J., Roberts, N., Birks, H.J.B., Lamb, H.F., 2002. The environmental impact of the minoan eruption of Santorini (Thera): statistical analysis of palaeocological data from Golhisar, southwest Turkey. Holocene 12, 431444.Google Scholar
Epler, J.H., 2001. Identification manual for the larval Chironomidae (Diptera) of North and South Carolina. EPA Region 4 and Human Health and Ecological Division. North Carolina Department of Environment and Natural Resources, Division of Water Quality, Florida.Google Scholar
Ferreyra, M., Cingolani, A., Ezcurra, C., Bran, D., 1998. High-Andean vegetation and environmental gradients in northwestern Patagonia, Argentina. Journal of Vegetation Science 9, 307316.Google Scholar
Garcia, P.E., Dieguez, M.C., Queimaliños, C., 2015. Landscape integration of North Patagonian mountain lakes: a first approach using characterization of dissolved organic matter. Lakes and Reservoirs Research and Management 20, 1932.Google Scholar
Grimm, E., 1987. A Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, 1335.Google Scholar
Heiri, O., Lotter, A.F., Lemcke, G., 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility ad comparability of results. Journal of Paleolimnology 25, 101110.Google Scholar
Lara, A., Villalba, R., 1993. A 3620-year temperature record from Fitzroya cupressoides tree rings in Southern South America. Science 260, 11041106.Google Scholar
Larocque-Tobler, I., Grosjean, M., Heiri, O., Bigler, C., Blass, A., 2009. Comparison between chironomid-inferred July temperatures and meteorological data AD 1850–2001 from varved Lake Silvaplana, Switzerland. Journal of Paleolimnology 41, 329342.Google Scholar
Lods-Crozet, B., Oertli, B., Robinson, C.T., 2012. Long-term patterns of chironomid assemblages in a high elevation stream/lake network (Switzerland)—implications to global change. Fauna Norvegica 31, 7185.Google Scholar
Lowe, D., 2011. Tephrochronology and its application: a review. Quaternary Geochronology 6, 107153.Google Scholar
Martinez, E.A., Moore, B.C., Schaumloffel, J., Dasgupta, N., 2002. The potential association between menta deformities and trace elements in chironomidae (Diptera) taken from a heavy metal contaminated river. Archives of Environmental Contamination and Toxicology 42, 286291.Google Scholar
Masiokas, M.H., Rivera, A., Lukman, B.H., Espizua, L.E., Villalba, R., Delgado, S., Aravena, J.C., 2009. Glacier fluctuations in extratropical South America during the past 1000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 281, 242268.Google Scholar
Massaferro, J., Brooks, S., 2002. Response of chironomids to late quaternary environmental change in the Taitao Peninsula, southern Chile. Journal of Quaternary Science 17, 101111Google Scholar
Massaferro, J., Brooks, S.J., Haberle, S.G., 2005a. The dynamics of chironomid assemblages and vegetation during the late Quaternary at Laguna Facil, Chonos Archipelago, southern Chile. Quaternary Science Reviews 24, 25102522.Google Scholar
Massaferro, J., Corley, J., 1998. Environmental disturbance and Chironomid palaeodiversity: 15 kyr BP of history at lake Mascardi, Patagonia, Argentina. Aquatic Conservation 8, 315323.Google Scholar
Massaferro, J., Correa-Metrio, A., Montes de Oca, F., Mauad, M., 2017. Contrasting responses of lake ecosystems to environmental disturbance: a paleoecological perspective from northern Patagonia (Argentina). Hydrobiologia 816, 7989.Google Scholar
Massaferro, J., Larocque-Tobler, I., 2013. Using a newly developed chironomid transfer function for reconstructing mean annual air temperature at Lake Potrok Aike, Patagonia, Argentina. Ecological Indicators 24, 201210.Google Scholar
Massaferro, J., Ribeiro Guevara, S., Rizzo, A., Arribére, M., 2005b. Short-term environmental changes in Lake Morenito (41° S, 71° W, Patagonia, Argentina) from the analysis of subfossil chironomids. Aquatic Conservation 15, 2330.Google Scholar
Massaferro, J., Moreno, P.I., Denton, G.H., Vandergoes, M., Dieffenbacher.Krall, A., 2009. Chironomid and pollen evidence for climate fluctuations during the Last Glacial Termination in NW Patagonia. Quaternary Science Reviews 28, 517525.Google Scholar
Michelutti, N., Lemmen, J.L., Cooke, C.A., Hobbs, W.O., Wolfe, A.P., Kurek, J., Smol, J.P., 2016. Assessing the effects of climate and volcanism on diatom and chironomid assemblages in an Andean lake near Quito, Ecuador. Journal of Limnology 75, 275286.Google Scholar
Millet, L., Massa, C., Bichet, V., Frossard, V., Belle, S., Gauthier, E., 2014. Anthropogenic versus climatic control in a high-resolution 1500-year chironomid stratigraphy from a southwestern Greenland lake. Quaternary Research 81, 193202.Google Scholar
Miserendino, M.L., Archangelsky, M., Brand, C., Epele, L.B., 2012. Environmental changes and macroinvertebrate responses in Patagonian streams (Argentina) to ashfall from the Chaitén Volcano (May 2008). Science of the Total Environment 424, 202212.Google Scholar
Modenutti, B.E., 1993. Summer population of Hexarthra bulgarica in a high elevation lake of South Andes. Hydrobiologia 259, 3337.Google Scholar
Modenutti, B.E., Balseiro, E.G., Elser, J.J., Bastidas Navarro, M., Cuassolo, F., Laspoumaderes, C., Souza, M.S., Díaz Villanueva, V., 2013. Effect of volcanic eruption on nutrients, light, and phytoplankton in oligotrophic lakes. Limnology and Oceanography 58, 11651175Google Scholar
Montes de Oca, F., Motta, L., Plastani, M.S., Laprida, C., Lami, A., Massaferro, J., 2017. Reconstructing recent environmental changes using nonbiting midges (Diptera: Chironomidae) in two high mountain lakes from northern Patagonia, Argentina. Journal of Paleolimnology 59, 175187.Google Scholar
Motta, L., 2017. Estructura de los ensambles de quironómidos (Diptera: Chironomidae) en gradientes altitudinales: Herramientas para estudiar cambios climáticos y ambientales. PhD dissertation, Universidad de Buenos Aires, Buenos Aires.Google Scholar
Neukom, R., Luterbacher, J., Villalba, R., Küttel, M., Frank, D., Jones, P.D., Grosjean, M., et al. , 2011. Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries. Climate Dynamics 37, 3551.Google Scholar
Rees, A.B.H., Cwynar, L.C., Fletcher, M., 2015. Southern Westerly winds submit to the ENSO regime: a multiproxy paleohydrology record from Lake Dobson, Tasmania. Quaternary Science Reviews 126, 254263.Google Scholar
Ribeiro Guevara, S., Arribére, M.A., 2002. 137Cs dating of lake cores from the Nahuel Huapi National Park, Patagonia, Argentina: historical records and profile measurements. Journal of Radioanalytical and Nuclear Chemistry 252, 3745.Google Scholar
Ribeiro Guevara, S., Meili, M., Rizzo, A., Daga, R., Arribére, M., 2010. Sediment records of highly variable mercury inputs to mountain lakes in Patagonia during the past millennium. Atmospheric Chemistry and Physics 10, 34433453.Google Scholar
Rieradevall, M., Brooks, S.J., 2001. An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chironomidae) based on cephalic setation. Journal of Paleolimnology 25, 8199.Google Scholar
Rieradevall, M., Jiménez, M., Prat, N., 1998. The zoobenthos of six remote mountain lakes in Spain and Portugal. Verhandlungen des Internationalen Verein Limnologie 26, 21322136.Google Scholar
Rieradevall, M., Prat, N., 1999. Chironomidae from high mountain lakes in Spain and Portugal. In: Hoffrichter, O. (Ed.)., Late 20th century Research on Chironomidae: An Anthology from the 13th International Symposium on Chironomidae. Shaker Verlag, Aachen.Google Scholar
Rico, E., Quesada, A., 2013. Distribution and ecology of chironomids (Diptera, Chironomidae) on Byers Peninsula, Maritime Antarctica. Antarctic Science 25, 288291Google Scholar
Rizzo, A., 2007. Dípteros quironómidos (Insecta) subfósiles y recientes en sedimentos lacustres andino-patagónicos: Influencia de los eventos paleoambientales naturales y artificiales. PhD dissertation, Universidad Nacional de la Plata (UNLP), La Plata.Google Scholar
Roback, S.S., Coffman, W.P., 1983. The results of the Catherwood Bolivian-Peruvian Altiplano Expedition. Part II. Aquatic Diptera including montane Diamesinae and Orthocladiinae (Chironomidae) from Venezuela. Proceedings of the Academy of Natural Sciences of Philadelphia 135, 979.Google Scholar
Ruiz, L., Berthier, E., Viale, M., Pitte, P., Masiokas, M.H., 2017. Recent geodetic mass balance of Monte Tronador glaciers, northern Patagonian Andes. The Cryosphere 11, 619634.Google Scholar
ter Braak, C.J.F., 1991. Program CANOCO Version 3.12. Agricultural Mathematics Group: Wageningen, The Netherlands.Google Scholar
ter Braak, C.J.F., Prentice, I.C., 1988. A theory of gradient analysis. Advances of Ecological Research 18, 271317.Google Scholar
ter Braak, C.J.F., Ŝmilauer, P., 1998. CANOCO Reference Manual and User's Guide to Canoco for Windows: Software for Canonical Community Ordination (version 4). Microcomputer Power, Ithaca.Google Scholar
Veblen, T.T., Holz, A., Paritsis, J., Raffaele, E., Kitzberger, T., Blackhall, M., 2011. Adapting to global environmental change in Patagonia: what role for disturbance ecology? Austral Ecology 36, 891903Google Scholar
Vermeulen, A.C., 1995. Elaborating chironomid deformities as bioindicators of toxic sediment stress: the potential application of mixture toxicity concepts. Annales Zoologici Fennici 32, 265285.Google Scholar
Villalba, R., 1990. Climatic fluctuations in Northern Patagonia during the last 1000 years as inferred from tree-ring records. Quaternary Research 34, 346360.Google Scholar
Villalba, R., 1994. Tree-ring and glacial evidence for the medieval warm epoch and the little ice age in southern South America. Climatic Change 26, 183197.Google Scholar
Walker, I.R., 2001. Midges: Chironomidae and related Diptera. In: Smol, J.P., Birks, H.J.B., Last, W.M. (Eds.), Tracking Environmental Changes Using Lakes Sediments. Kluwer, Dordrecht, pp. 4366.Google Scholar
Wang, H., Brooks, S.J., Chen, J., Hu, Y., Wang, Z., Liu, J., Xu, Q., Chen, F., 2016. Response of chironomid assemblages to east Asian summer monsoon precipitation variability in northern China since the last deglaciation. Journal of Quaternary Science 31, 967982.Google Scholar
Wiederholm, T., 1983. Chironomidae of the Holarctic region. Keys and diagnoses part 1: Larvae. Entomologica Scandinavica Suppement 19, 1457.Google Scholar
Williams, N., 2017. Los quironómidos (Chironomidae, Diptera) del Lago Moreno Oeste, Patagonia Norte: Distribución espacial, estructura de las comunidades actuales y subfósiles, y bioacumulación de metales traza. PhD dissertation, Universidad Nacional del Comahue, Bariloche.Google Scholar
Williams, N., Rieradevall, M., Añón Suárez, D., Rizzo, A., Daga, R., Ribeiro Guevara, S., Arribére, M., 2016. Chironomids as indicators of natural and human impacts in a 700-yr record from the northern Patagonian Andes. Quaternary Research 86, 120132.Google Scholar
Zar, J.H., 1996. Biostatistical Analysis. Prentice-Hall International, New York.Google Scholar
Zhang, E., Zheng, B., Cao, Y., Gao, G., Shen, J., 2012. Influence of environmental parameters on the distribution of subfossil chironomids in surface sediments of Bosten lake (Xinjiang, China). Journal of Limnology 71, 291298.Google Scholar
Supplementary material: File

Williams et al. supplementary material

Williams et al. supplementary material 1

Download Williams et al. supplementary material(File)
File 11.9 MB