Hostname: page-component-669899f699-swprf Total loading time: 0 Render date: 2025-04-27T20:50:26.707Z Has data issue: false hasContentIssue false

Fredholm index of Toeplitz pairs with $H^{\infty }$ symbols

Published online by Cambridge University Press:  10 December 2024

Penghui Wang
Affiliation:
School of Mathematics, Shandong University, Jinan 250100, Shandong, P. R. China e-mail: phwang@sdu.edu.cn
Zeyou Zhu*
Affiliation:
School of Mathematics, Shandong University, Jinan 250100, Shandong, P. R. China e-mail: phwang@sdu.edu.cn

Abstract

In the present paper, we characterize the Fredholmness of Toeplitz pairs on Hardy space over the bidisk with the bounded holomorphic symbols, and hence, we obtain the index formula for such Toeplitz pairs. The key to obtain the Fredholmness of such Toeplitz pairs is the $L^p$ solution of Corona Problem over $\mathbb {D}^2$.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

This work is supported by NSFC: (12271298 and 11871308).

References

Andersson, M. and Sandberg, S., The essential spectrum of holomorphic Toeplitz operators on ${H}^p$ spaces. Studia Math. 154(2003), no. 3, 223231.CrossRefGoogle Scholar
Curto, R., Fredholm and invertible n-tuples of operators. The deformation problem . Trans. Amer. Math. Soc. 266(1981), no. 1, 129159.Google Scholar
Douglas, R. G. and Sarkar, J., A note on semi-Fredholm Hilbert modules . Oper. Theory Adv. Appl. 202, 143150.Google Scholar
Fang, X., The Fredholm index of a pair of commuting operators . Geom. Funct. Anal. 16(2006), no. 2, 367402.CrossRefGoogle Scholar
Guo, K., Indices of Toeplitz tuples on pseudoregular domains . Sci. China Ser. A. 43(2000), no. 12, 12581268.CrossRefGoogle Scholar
Guo, K. and Wang, P., Defect operators and Fredholmness for Toeplitz pairs with inner symbols . J. Operator Theory. 58(2007), no. 2, 251268.Google Scholar
Kaad, J. and Nest, R., A transformation rule for the index of commuting operators . J. Noncommut. Geom. 9(2015), no. 1, 83119.CrossRefGoogle Scholar
Lin, K., The ${H}^p$ -corona theorem for the polydisc. Trans. Amer. Math. Soc. 341(1994), no. 1, 371375.Google Scholar
Lin, K., ${H}^p$ -solutions for the corona problem on the polydisc in ${\mathbb{C}}^n$ . Bull. Sci. Math. (2) 110(1986), no. 1, 6984.Google Scholar
Putinar, M., On joint spectra of pairs of analytic Toeplitz operators . Studia Math. 115(1995), no. 2, 129134.CrossRefGoogle Scholar
Rudin, W., Function theory in the unit ball of ${\mathbb{C}}^n$ , Springer-Verlag, 1980.Google Scholar
Salinas, N., Sheu, A. and Upmeier, H., Toeplitz operators on pseudoconvex domains and foliation C ${}^{\ast }$ -algebras. Ann. of Math. (2) 130(1989), no. 3, 531565.CrossRefGoogle Scholar
Taylor, J., A joint spectrum for several commuting operators . J. Funct. Anal. 6(1970), 172191.CrossRefGoogle Scholar
Yang, R., A trace formula for isometric pairs . Proc. Amer. Math. Soc. 131(2003), no. 2, 533541.CrossRefGoogle Scholar