Hostname: page-component-669899f699-qzcqf Total loading time: 0 Render date: 2025-04-28T12:02:39.206Z Has data issue: false hasContentIssue false

Trudinger-type inequalities in Musielak–Orlicz spaces and double phase functionals

Published online by Cambridge University Press:  27 March 2025

Takao Ohno*
Affiliation:
Faculty of Education, Oita University, Dannoharu Oita-city, 870-1192, Japan
Tetsu Shimomura
Affiliation:
Department of Mathematics, Graduate School of Humanities and Social Sciences, Hiroshima University, Higashi-Hiroshima, 739-8524, Japan e-mail: tshimo@hiroshima-u.ac.jp

Abstract

We establish Trudinger-type inequalities for variable Riesz potentials $J_{\alpha (\cdot ), \tau }f$ of functions in Musielak–Orlicz spaces $L^{\Phi }(X)$ over bounded metric measure spaces X equipped with lower Ahlfors $Q(x)$-regular measures under conditions on $\Phi $ which are weaker than conditions in the previous paper (Houston J. Math. 48 (2022), no. 3, 479–497). We also deal with the case $\Phi $ is the double phase functional with variable exponents. As an application, Trudinger-type inequalities are discussed for Sobolev functions.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Baroni, P., Colombo, M., and Mingione, G., Harnack inequalities for double phase functionals . Nonlinear Anal. 121(2015), 206222.Google Scholar
Björn, A. and Björn, J., Nonlinear potential theory on metric spaces, EMS Tracts in Mathematics, 17, European Mathematical Society (EMS), Zurich, 2011.Google Scholar
Colombo, M. and Mingione, G., Regularity for double phase variational problems . Arch. Ration. Mech. Anal. 215(2015), no. 2, 443496.Google Scholar
Hajłasz, P. and Koskela, P., Sobolev met Poincaré . Mem. Amer. Math. Soc. 145(2000), no. 688, x+101 pp.Google Scholar
Harjulehto, P. and Hästö, P., Orlicz spaces and generalized Orlicz spaces, Lecture Notes in Mathematics, 2236, Springer, Cham, 2019.Google Scholar
Harjulehto, P., Hästö, P., and Latvala, V., Sobolev embeddings in metric measure spaces with variable dimension . Math. Z. 254(2006), no. 3, 591609.Google Scholar
Hashimoto, D., Sawano, Y., and Shimomura, T., Gagliardo-Nirenberg inequality for generalized Riesz potentials of functions in Musielak–Orlicz spaces over quasi-metric measure spaces . Colloq. Math. 161(2020), 5166.Google Scholar
Hedberg, L. I., On certain convolution inequalities . Proc. Amer. Math. Soc. 36(1972), 505510.Google Scholar
Heinonen, J., Lectures on analysis on metric spaces. Springer-Verlag, New York, NY, 2001.Google Scholar
Maeda, F.-Y., Mizuta, Y., Ohno, T., and Shimomura, T., Boundedness of maximal operators and Sobolev’s inequality on Musielak-Orlicz-Morrey spaces . Bull. Sci. Math. 137(2013), 7696.Google Scholar
Maeda, F.-Y., Mizuta, Y., Ohno, T., and Shimomura, T., Sobolev’s inequality inequality for double phase functionals with variable exponents . Forum Math. 31(2019), 517527.Google Scholar
Maeda, F.-Y., Mizuta, Y., Ohno, T., and Shimomura, T., Trudinger’s inequality for double phase functionals with variable exponents . Czechoslovak Math. J. 71(2021), no. 2, 511528.Google Scholar
Nazarov, F., Treil, S., and Volberg, A., Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces . Internat. Math. Res. Notices (1998), no. 9, 463487.Google Scholar
Ohno, T. and Shimomura, T., Musielak-Orlicz-Sobolev spaces on metric measure spaces . Czechoslovak Math. J. 65(2015), no. 140, 435474.Google Scholar
Ohno, T. and Shimomura, T., Sobolev inequalities for Riesz potentials of functions in ${L}^{p\left(\cdotp \right)}$ over nondoubling measure spaces. Bull. Aust. Math. Soc. 93(2016), 128136.Google Scholar
Ohno, T. and Shimomura, T., Maximal and Riesz potential operators on Musielak-Orlicz spaces over metric measure spaces . Integral Equ. Oper. Theory 90(2018), no. 6, Art. 62. 18 pp.Google Scholar
Ohno, T. and Shimomura, T., Trudinger-type inequalities for variable Riesz potentials of functions in Musielak-Orlicz-Morrey spaces over metric measure spaces . Math. Nachr. 297(2024), no. 4, 12481274.Google Scholar
Ohno, T. and Shimomura, T., Trudinger-type inequalities in Musielak-Orlicz spaces . Houston J. Math. 48(2022), no. 3, 479497.Google Scholar
Ragusa, M. A. and Tachikawa, A., Regularity for minimizers for functionals of double phase with variable exponents . Adv. Nonlinear Anal. 9(2020), no. 1, 710728.Google Scholar
Sawano, Y., Sharp estimates of the modified Hardy-Littlewood maximal operator on the nonhomogeneous space via covering lemmas . Hokkaido Math. J. 34(2005), 435458.Google Scholar
Sawano, Y. and Shimomura, T., Sobolev embeddings for Riesz potentials of functions in non-doubling Morrey spaces of variable exponents . Collect. Math. 64(2013), 313350.Google Scholar
Sawano, Y. and Shimomura, T., Maximal operator on Orlicz spaces of two variable exponents over unbounded quasi-metric measure spaces . Proc. Amer. Math. Soc. 147(2019), 28772885.Google Scholar
Stein, E. M., Singular integrals and differentiability properties of functions. Princeton University Press, Princeton, NJ, 1970.Google Scholar
Strömberg, J.-O., Weak type ${L}^1$ estimates for maximal functions on noncompact symmetric spaces. Ann. Math. (2) 114(1981), no. 1, 115126.Google Scholar
Terasawa, Y., Outer measures and weak type $\left(1,1\right)$ estimates of Hardy-Littlewood maximal operators. J. Inequal. Appl. (2006), Article ID 15063, 13pp.Google Scholar
Trudinger, N. S., On imbeddings into Orlicz spaces and some applications . J. Math. Mech. 17(1967), 473483.Google Scholar
Zhikov, V. V., Averaging of functionals of the calculus of variations and elasticity theory . Izv. Akad. Nauk SSSR Ser. Mat. 50(1986), 675710.Google Scholar