Hostname: page-component-669899f699-cf6xr Total loading time: 0 Render date: 2025-04-27T13:57:03.366Z Has data issue: false hasContentIssue false

Insights into spatio-temporal dynamics during shock–droplet flame interaction

Published online by Cambridge University Press:  12 November 2024

Gautham Vadlamudi
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India
Akhil Aravind
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India
Saini Jatin Rao
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India
Saptarshi Basu*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India Interdisciplinary Centre for Energy Research (ICER), Indian Institute of Science, Bangalore 560012, India
*
Email address for correspondence: [email protected]

Abstract

This study comprehensively investigates the response of a combusting droplet during its interaction with a high-speed transient flow imposed by a coaxially propagating blast wave. The blast wave is generated using a specially designed miniature shock generator that produces blast waves using the wire-explosion technique, facilitating a wide range of Mach numbers (1.03 < Ms < 1.8). The experiments are performed in two configurations: open field and focused blast wave. The charging voltage and the configuration determine the Mach number (Ms) and flow characteristics. The flame is found to exhibit two major response patterns: partial extinction followed by reignition and full extinction. Increasing the Mach number (Ms > 1.1) makes the droplet flame more vulnerable to extinction. Additionally, the flame exhibits stretching and shedding, followed by reignition at lower Mach numbers (Ms < 1.06). In all cases, the flame base lifts off in response to the imposed flow, and the advection of the flame base interacting with the flame tip results in flame extinction. The entire interaction occurs in two stages: (i) interaction with the blast wave and the decaying velocity profile associated with it, and (ii) interaction with the induced flow behind the blast wave as a result of the entrainment (delayed response). Alongside the flame's response, the droplet also interacts with the flow imposed by the blast wave, exhibiting different response modes including pure deformation, Rayleigh–Taylor piercing bag breakup and shear-induced stripping.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ahmad, H., Hasan, N. & Sanghi, S. 2020 On the formation and sustenance of the compressible vortex rings in starting axisymmetric jets: a phenomenological approach. Phys. Fluids 32, 126114.CrossRefGoogle Scholar
Almustafa, M.K. & Nehdi, M.L. 2023 Fundamental review on collision of blast waves. Phys. Fluids 35, 031302.CrossRefGoogle Scholar
Anderson, C.D. & Schetz, J.A. 2005 Liquid-fuel aeroramp injector for scramjets. J. Propul. Power 21, 371374.CrossRefGoogle Scholar
Apazidis, N. & Eliasson, V. 2019 Shock Focusing Phenomena, Shock Wave and High Pressure Phenomena. Springer.Google Scholar
Bach, G.G. & Lee, J.H.S. 1970 An analytical solution for blast waves. AIAA J. 8, 271275.CrossRefGoogle Scholar
Balakrishnan, P., Sundararajan, T. & Natarajan, R. 2001 Combustion of a fuel droplet in a mixed convective environment. Combust. Sci. Technol. 163, 77106.CrossRefGoogle Scholar
Barbaglia, M.O. & Rodriguez Prieto, G. 2018 Electrical behavior of exploding copper wire in ambient air. Phys. Plasmas 25, 072108.CrossRefGoogle Scholar
Basu, S. & Miglani, A. 2016 Combustion and heat transfer characteristics of nanofluid fuel droplets: a short review. Intl J. Heat Mass Transfer 96, 482503.CrossRefGoogle Scholar
Chan, J.E., Giannuzzi, P., Kabir, K.R., Hargather, M. & Doig, G. 2016 Interactions of shock tube exhaust flows with laminar and turbulent flames. AIAA Paper 2016-1588.CrossRefGoogle Scholar
Chandra, N.K., Sharma, S., Basu, S. & Kumar, A. 2023 Shock-induced aerobreakup of a polymeric droplet. J. Fluid Mech. 965, A1.CrossRefGoogle Scholar
Chiu, K.W., Lee, J.H. & Knystautas, R. 1977 The blast waves from asymmetrical explosions. J. Fluid Mech. 82, 193208.CrossRefGoogle Scholar
Ciccarelli, G., Johansen, C.T. & Parravani, M. 2010 The role of shock–flame interactions on flame acceleration in an obstacle laden channel. Combust. Flame 157, 21252136.CrossRefGoogle Scholar
Díaz, J.S. & Rigby, S.E. 2022 Blast wave kinematics: theory, experiments, and applications. Shock Waves 32, 405415.CrossRefGoogle Scholar
Dong, G., Fan, B. & Ye, J. 2008 Numerical investigation of ethylene flame bubble instability induced by shock waves. Shock Waves 17, 409419.CrossRefGoogle Scholar
Dyson, D., Arakelyan, A., Berube, N., Briggs, S., Ramirez, J., Thurmond, K., Kim, G., Green, W.H., Udaykumar, H.S. & Vasu, S.S. 2022 Experimental investigation of reacting fuel droplets interactions with detonation waves. 28th ICDERS, Napoli, Italy.Google Scholar
Goldstine, H. & von Neumann, J. 1955 Blast wave calculation. Commun. Pure Appl. Math. 8, 327353.CrossRefGoogle Scholar
Guerieri, P.M., DeCarlo, S., Eichhorn, B., Connell, T., Yetter, R.A., Tang, X., Hicks, Z., Bowen, K.H. & Zachariah, M.R. 2015 Molecular aluminum additive for burn enhancement of hydrocarbon fuels. J. Phys. Chem. 119, 1108411093.CrossRefGoogle ScholarPubMed
Guerieri, P.M., DeLisio, J.B. & Zachariah, M.R. 2017 Nanoaluminum/nitrocellulose microparticle additive for burn enhancement of liquid fuels. Combust. Flame 176, 220228.CrossRefGoogle Scholar
Hara, H. & Kumagai, S. 1994 The effect of initial diameter on free droplet combustion with spherical flame. Symp. (Intl) Combust. 25, 423430.CrossRefGoogle Scholar
Huang, L.W. & Chen, C.H. 1994 Single droplet combustion in a gravitational environment. Wärme-Stoffübertrag. 29, 415423.CrossRefGoogle Scholar
Jiang, Z., Takayama, K., Babinsky, H. & Meguro, T. 1997 Transient shock wave flows in tubes with a sudden change in cross section. Shock Waves 7, 151162.CrossRefGoogle Scholar
Ju, Y., Shimano, A. & Inoue, O. 1998 Vorticity generation and flame distortion induced by shock flame interaction. Symp. (Intl) Combust. 27, 735741.CrossRefGoogle Scholar
Kashdan, J., Hanson, T., Piper, E., Davidson, D. & Hanson, R. 2004 A new facility for the study of shock wave-induced combustion of liquid fuels. AIAA Paper 2004-468.CrossRefGoogle Scholar
Khokhlov, A.M., Oran, E.S., Chtchelkanova, A.Y. & Wheeler, J.C. 1999 Interaction of a shock with a sinusoidally perturbed flame. Combust. Flame 117, 99116.CrossRefGoogle Scholar
Kramer, R.M.J., Pullin, D.I., Meiron, D.I. & Pantano, C. 2010 Shock-resolved Navier–Stokes simulation of the Richtmyer–Meshkov instability start-up at a light–heavy interface. J. Fluid Mech. 642, 421443.CrossRefGoogle Scholar
La Flèche, M. 2018 Dynamics of blast wave and cellular H2-air flame interaction in a Hele-Shaw cell. PhD thesis, University of Ottawa.Google Scholar
Law, C.K. & Williams, F.A. 1972 Kinetics and convection in the of alkane droplets. Combust. Flame 19, 393405.CrossRefGoogle Scholar
Lee, J.H.S. 1965 The propagation of shocks and blast waves in a detonating gas (No. 65–1). Dept. of Mechanical Engineering, McGill Univ., Montreal, Quebec, Canada.Google Scholar
Liverts, M., Ram, O., Sadot, O., Apazidis, N. & Ben-Dor, G. 2015 Mitigation of exploding-wire-generated blast-waves by aqueous foam. Phys. Fluids 27, 076103.CrossRefGoogle Scholar
Maley, L., Bhattacharjee, R., Lau-Chapdelaine, S.M. & Radulescu, M.I. 2015 Influence of hydrodynamic instabilities on the propagation mechanism of fast flames. Proc. Combust. Inst. 35, 21172126.CrossRefGoogle Scholar
Oshima, K. 1960. Blast waves produced by exploding wires. Rep. No. 358. Aeronautical Research Institute, University of Tokyo, Japan.Google Scholar
Pandey, K., Basu, S., Krishan, B. & Vadlamudi, G. 2021 Dynamic self-tuning, flickering and shedding in buoyant droplet diffusion flames under acoustic excitation. Proc. Combust. Inst. 38, 31413149.CrossRefGoogle Scholar
Pandey, K., Basu, S., Vadlamudi, G., Potnis, A. & Chattopadhyay, K. 2020 Self-tuning and topological transitions in a free-falling nanofuel droplet flame. Combust. Flame 220, 144156.CrossRefGoogle Scholar
Patten, J., Malik, V., Salauddin, S. & Ahmed, K.A. 2023 Exploration of shock-droplet ignition and combustion. AIAA Paper 2023-0560.CrossRefGoogle Scholar
Picone, J.M. & Boris, J.P. 1988 Vorticity generation by shock propagation through bubbles in a gas. J. Fluid Mech. 189, 2351.CrossRefGoogle Scholar
Prieto, G.R. & Bilbao, L. 2019 Slow energy deposition in an exploding wire and plasma evolution for longer times than the electrical discharge time. JINST 14, C09017.CrossRefGoogle Scholar
Qin, L., Xiang, Y., Lin, H. & Liu, H. 2020 Formation and dynamics of compressible vortex rings generated by a shock tube. Exp. Fluids 61, 86.CrossRefGoogle Scholar
Roy, C.J. & Edwards, J.R. 2000 Numerical simulation of a three-dimensional flame/shock wave interaction. AIAA J. 38, 745754.CrossRefGoogle Scholar
Sakurai, A. 1956 Propagation of spherical shock waves in stars. J. Fluid Mech. 1, 436453.CrossRefGoogle Scholar
Sedov, L.I. 1957 Similarity and Dimensional Methods in Mechanics, 10th edn. Academic Press.Google Scholar
Sembian, S., Liverts, M., Tillmark, N. & Apazidis, N. 2016 Plane shock wave interaction with a cylindrical water column. Phys. Fluids 28, 056102.CrossRefGoogle Scholar
Sharma, S., Chandra, N.K., Basu, S. & Kumar, A. 2023 a Advances in droplet aerobreakup. Eur. Phys. J. Spec. Top. 232, 719733.CrossRefGoogle Scholar
Sharma, S., Chandra, N.K., Kumar, A. & Basu, S. 2023 b Shock-induced atomisation of a liquid metal droplet. J. Fluid Mech. 972, A7.CrossRefGoogle Scholar
Sharma, S., Singh, A.P., Rao, S.S., Kumar, A. & Basu, S. 2021 Shock induced aerobreakup of a droplet. J. Fluid Mech. 929, A27.CrossRefGoogle Scholar
Sherman, P. 1975 A method for the experimental study of variable energy blast waves. Combust. Sci. Technol. 10, 211218.CrossRefGoogle Scholar
Shi, H., Wu, J., Li, X., Murphy, A.B., Li, X., Li, C. & Li, P. 2019 Understanding the nanoparticle formation during electrical wire explosion using a modified moment model. Plasma Sources Sci. Technol. 28, 085010.CrossRefGoogle Scholar
Sterbentz, D.M., Jekel, C.F., White, D.A., Aubry, S., Lorenzana, H.E. & Belof, J.L. 2022 Design optimization for Richtmyer–Meshkov instability suppression at shock-compressed material interfaces. Phys. Fluids 34, 082109.CrossRefGoogle Scholar
Taylor, G.I. 1950 The formation of a blast wave by very intense explosion. I. Theoretical discussion. Proc. R. Soc. Lond. A 201, 159174.Google Scholar
Thirumalaikumaran, S.K., Vadlamudi, G. & Basu, S. 2022 Insight into flickering/shedding in buoyant droplet-diffusion flame during interaction with vortex. Combust. Flame 240, 112002.CrossRefGoogle Scholar
Thomas, G., Bambrey, R. & Brown, C. 2001 Experimental observations of flame acceleration and transition to detonation following shock-flame interaction. Combust. Theor. Model. 5, 573594.CrossRefGoogle Scholar
Tyaktev, A.A., Pavlenko, A.V., Anikin, N.B., Bugaenko, I.L. & Piskunov, Y.A. 2020 Richtmyer–Meshkov instability of laminar flame. J. Appl. Mech. Tech. Phys. 61, 157161.CrossRefGoogle Scholar
Vadlamudi, G., Aravind, A. & Basu, S. 2023 Insights into the flame transitions and flame stabilization mechanisms in a freely falling burning droplet encountering a co-flow. J. Fluid Mech. 977, A29.CrossRefGoogle Scholar
Vadlamudi, G., Thirumalaikumaran, S.K. & Basu, S. 2021 Insights into the dynamics of wake flame in a freely falling droplet. Phys. Fluids 33, 123306.CrossRefGoogle Scholar
Rae, W.J. 1965 Non-similar solutions for impact generated shock propagation in solids (No. AI-1821-A-2). Cornell Aeronautical Lab, Buffalo, NY.Google Scholar
Wei, H., Xu, Z., Zhou, L., Gao, D. & Zhao, J. 2017 Effect of initial pressure on flame–shock interaction of hydrogen–air premixed flames. Intl J. Hydrog. Energy 42, 1265712668.CrossRefGoogle Scholar
Wei, T. & Hargather, M.J. 2021 A new blast wave scaling. Shock Waves 31, 231238.CrossRefGoogle Scholar
Williams, A. 1973 Combustion of droplets of liquid fuels: a review. Combust. Flame 21, 131.CrossRefGoogle Scholar
Xia, X. & Zhang, P. 2018 A vortex-dynamical scaling theory for flickering buoyant diffusion flames. J. Fluid Mech. 855, 11561169.CrossRefGoogle Scholar
Yang, T., Lin, C., Li, D. & Lai, H. 2023 Influence of density ratios on Richtmyer–Meshkov instability with non-equilibrium effects in the reshock process. Inventions 8, 157.CrossRefGoogle Scholar
Yoshida, Y. & Torikai, H. 2024 Blowoff mechanism of airburst blast extinguishment of a methane air jet diffusion flame with micro explosive. Fire Safety J. 142, 103983.CrossRefGoogle Scholar
Zare-Behtash, H., Kontis, K. & Gongora-Orozco, N. 2008 Experimental investigations of compressible vortex loops. Phys. Fluids 20, 126105.CrossRefGoogle Scholar
Zare-Behtash, H., Kontis, K., Gongora-Orozco, N. & Takayama, K. 2009 Compressible vortex loops: effect of nozzle geometry. Intl J. Heat Fluid Flow 30, 561576.CrossRefGoogle Scholar
Zhang, H., Chen, Z., Li, B. & Jiang, X. 2014 The secondary vortex rings of a supersonic underexpanded circular jet with low pressure ratio. Eur. J. Mech. B/Fluids 46, 172180.CrossRefGoogle Scholar
Zhou, Y. 2017. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720–722, 1136.Google Scholar
Zhou, Y. et al. 2021 Rayleigh–Taylor and Richtmyer–Meshkov instabilities: a journey through scales. Physica D: Nonlinear Phenom. 423, 132838.CrossRefGoogle Scholar
Supplementary material: File

Vadlamudi et al. supplementary movie 1

High-speed Schlieren Flow visualization of the droplet flame interaction with blast wave at Ms ~ 1.05 (10kV_Open): showing slower flame liftoff and reattachment due to interaction with vs and vind.
Download Vadlamudi et al. supplementary movie 1(File)
File 1.1 MB
Supplementary material: File

Vadlamudi et al. supplementary movie 2

High-speed Schlieren Flow visualization of the droplet flame interaction with blast wave at Ms ~ 1.065 (10kV_Open): showing slower flame liftoff leading to extinction due to interaction with vs and vind.
Download Vadlamudi et al. supplementary movie 2(File)
File 902.6 KB
Supplementary material: File

Vadlamudi et al. supplementary movie 3

High-speed Schlieren Flow visualization of the droplet flame interaction with blast wave at Ms ~ 1.07 (4kV_B): showing slower flame liftoff leading to extinction due to interaction with vs and vind.
Download Vadlamudi et al. supplementary movie 3(File)
File 1.8 MB
Supplementary material: File

Vadlamudi et al. supplementary movie 4

High-speed Schlieren Flow visualization of the droplet flame interaction with blast wave at Ms ~ 1.29 (7kV_B): showing immediate flame liftoff and extinction due to interaction with vs. Compressible vortex (CVR) interaction with the droplet leading to droplet atomization is also shown.
Download Vadlamudi et al. supplementary movie 4(File)
File 328.4 KB
Supplementary material: File

Vadlamudi et al. supplementary movie 5

High-speed Schlieren Flow visualization of the droplet flame interaction with blast wave at Ms ~ 1.32 (6kV_S): showing immediate flame liftoff and extinction due to interaction with vs. Compressible vortex (CVR) interaction with the droplet leading to droplet atomization is also shown.
Download Vadlamudi et al. supplementary movie 5(File)
File 1 MB
Supplementary material: File

Vadlamudi et al. supplementary movie 6

High-speed Schlieren Flow visualization of the droplet flame interaction with blast wave at Ms ~ 1.52 (8kV_S): showing immediate flame liftoff and extinction due to interaction with vs. Compressible vortex (CVR) interaction with the droplet leading to droplet atomization is also shown.
Download Vadlamudi et al. supplementary movie 6(File)
File 405.4 KB
Supplementary material: File

Vadlamudi et al. supplementary material 7

Vadlamudi et al. supplementary material
Download Vadlamudi et al. supplementary material 7(File)
File 1.1 MB