Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-02T21:05:45.867Z Has data issue: false hasContentIssue false

Sustainable carbon emissions: The geologic perspective

Published online by Cambridge University Press:  26 August 2015

Donald J. DePaolo*
Affiliation:
Earth Sciences Division, Lawrence Berkeley National Laboratory, and Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
*
a)Address all correspondence to Donald J. DePaolo at [email protected]
Get access

Abstract

Current issues with carbon emissions need to be understood in terms of natural geologic processes that move carbon on the Earth. Comparison of modern emissions with the norms and extremes of natural processes emphasizes the enormity of the current challenge, and also the reason there are uncertainties about the future effects. Reaching sustainable emissions in the future can be viewed as a need to systematically reduce the carbon intensity of energy production.

Achieving sustainable carbon emissions requires understanding of Earth's natural carbon cycles. Geologic processes move carbon in large quantities between Earth reservoirs, including in and out of the deeper reaches of the planet, and regulate Earth's surface temperature within a narrow range suitable for life for the past 3–4 billion years. There have been large changes in atmospheric CO2 in the geologic past; the largest to offset changes in the brightness of the Sun. Atmospheric CO2 has been much higher in the past, but not since humans evolved. Geologic processes act slowly, even during times in the geologic past regarded as examples of catastrophic climate change. In contrast, over the past 100 years, Earth's carbon cycles have undergone revolutionary change as a result of a greatly accelerated transfer of carbon from geologic storage to the atmosphere. Today, about 98% of the movement of carbon out of geologic reservoirs (coal-, oil-, and gas-bearing sedimentary rocks and limestone) into the atmosphere is due to human activities; the total carbon flux is 40–50 times the geologic flux. The extremely large modern carbon flux is unprecedented in Earth history. Returning to a sustainable carbon cycle requires systematic lowering of the carbon emission intensity of energy production over the next century.

Type
Review
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Archer, D. and Brovkin, V.: The millennial atmospheric lifetime of anthropogenic CO2 . Clim. Change 90, 283297 (2008).CrossRefGoogle Scholar
Archer, D., Eby, M., and Brovkin, V.: Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 37, 117134 (2009).CrossRefGoogle Scholar
Archer, D., Kheshgi, H., and Maier-Reimer, E.: Dynamics of fossil fuel CO2 neutralization by marine CaCO3 . Global Biogeochem. Cycles 12, 259276 (1998).CrossRefGoogle Scholar
Arrhenius, S.: On the influence of carbonic acid in the air upon the temperature of the ground. Philos. Mag. 41, 237276 (1896).CrossRefGoogle Scholar
Beerling, D.J. and Royer, D.L.: Convergent cenozoic CO2 history. Nat. Geosci. 4, 418420 (2011).CrossRefGoogle Scholar
Benson, S.M. and Cook, P.: Underground geological storage. In Carbon Dioxide Capture and Storage: Special Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press: Interlachen, Switzerland, 5-1 to 5-134, 2005.Google Scholar
Berner, R.A.: The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426, 323326 (2003).CrossRefGoogle ScholarPubMed
Berner, R.A.: GEOCARB II: A revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 294, 5691 (1994).CrossRefGoogle Scholar
Berner, R.A., Lasaga, A.C., and Garrels, R.M.: The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641683 (1983).CrossRefGoogle Scholar
Broecker, W.S., Takahashi, T., Simpson, H.H., and Peng, T.H.: Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206, 409418 (1979).CrossRefGoogle ScholarPubMed
Burton, M.R., Sawyer, G.M., and Granieri, D.: Deep carbon emissions from volcanoes. Rev. Mineral. Geochem. 75, 323354 (2013).CrossRefGoogle Scholar
Caldeira, K.: Long-term control of atmospheric carbon-dioxide—low-temperature sea-floor alteration or terrestrial silicate-rock weathering. Am. J. Sci. 295(9), 10771114 (1995).CrossRefGoogle Scholar
Caldeira, K., Jain, A.K., and Hoffert, M.I.: Climate sensitivity uncertainty and the need for energy without CO2 emission. Science 299, 20522054 (2003).CrossRefGoogle ScholarPubMed
Canadell, J.G., Pataki, D.E., Gifford, R., Houghton, R.A., and Luo, Y.: Saturation of the terrestrial carbon sink. In Terrestrial Ecosystems in a Changing World, Canadell, J.G., Pataki, D., and Pitelka, L. eds.; Springer-Verlag: Berlin, 2007; pp. 5978.CrossRefGoogle Scholar
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R.B., Piao, S., and Thornton, P.: Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F., Qin, D., Plattner, G-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. eds.; Cambridge University Press: Cambridge, New York, NY, USA, 2013.Google Scholar
Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A., and Totterdell, I.J.: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184187 (2000).CrossRefGoogle Scholar
Cui, Y., Kump, L.R., Ridgwell, A.J., Charles, A.J., Junium, C.K., Diefendorf, A.F., Freeman, K.H., Urban, N.M., and Harding, I.C.: Slow release of fossil carbon during the Palaeocene–Eocene Thermal Maximum. Nat. Geosci. 4, 481485 (2011).CrossRefGoogle Scholar
DasGupta, R.: Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev. Mineral. Geochem. 75, 183229 (2013).CrossRefGoogle Scholar
Dasgupta, R. and Hirschmann, M.M.: The deep carbon cycle and melting in earth’s interior. Earth Planet. Sci. Lett. 298, 113 (2010).CrossRefGoogle Scholar
Davidson, E.A. and Janssens, I.A.: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165173 (2006).CrossRefGoogle ScholarPubMed
DeConto, R.M. and Pollard, D.: Rapid cenozoic glaciation of Antarctica induced by declining atmospheric CO2 . Nature 421, 245249 (2003).CrossRefGoogle ScholarPubMed
Dickens, G.R., O’Neil, J.R., Res, D.K., and Owen, R.M.: Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965971 (1995).CrossRefGoogle Scholar
Edmond, J.M. and Huh, Y.: Non-steady state carbonate recycling and implications for the evolution of atmospheric PCO2 . Earth Planet. Sci. Lett. 216, 125139 (2003).CrossRefGoogle Scholar
England, M.H. and Maier-Reimer, E.: Using chemical tracers to assess ocean models. Rev. Geophys. 39, 2970 (2001).CrossRefGoogle Scholar
EPICA Community Members: Eight glacial cycles from an Antarctic ice core. Nature 429, 623628 (2004).CrossRefGoogle Scholar
Fraser, K., Johnston, B., Turchyn, A.V., and Edmonds, M.: Decarbonation efficiency in subduction zones: Implications for warm Cretaceous climates. Earth Planet. Sci. Lett. 303, 143152 (2011).Google Scholar
Friedlingstein, P., Meinshausen, M., Arora, V.K., Jones, C.D., Anav, A., Liddicoat, S.K., and Knutti, R.: Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511526 (2014).CrossRefGoogle Scholar
Gaudinski, J.B., Trumbore, S.E., Davidson, E.A., and Zheng, S.: Soil carbon cycling in a temperate forest: Radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51, 3369 (2000).CrossRefGoogle Scholar
Gerlach, T.M.: Volcanic versus anthropogenic carbon dioxide. EOS Trans. 92(24), 201208 (2011).CrossRefGoogle Scholar
Gough, D.O.: Solar interior structure and luminosity variations. Sol. Phys. 74, 2134 (1981).CrossRefGoogle Scholar
Graven, H.D., Keeling, R.F., Piper, S.C., Patra, P.K., Stephens, B.B., Wofsy, S.C., Welp, L.R., Sweeney, C., Tans, P.P., Kelley, J.J., Daube, B.C., Kort, E.A., Santoni, G.W., and Bent, J.D.: Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 10851089 (2013).CrossRefGoogle ScholarPubMed
Hoffman, P.F., Kaufman, A.J., Halverson, G.P., and Schrag, D.P.: A Neoproterozoic snowball earth. Science 281, 13421346 (1998).CrossRefGoogle ScholarPubMed
Hoffman, P.F. and Schrag, D.P.: The snowball earth hypothesis: Testing the limits of global change. Terra Nova 14, 129155 (2002).CrossRefGoogle Scholar
Houghton, R.A.: Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci. 35, 313347 (2007).CrossRefGoogle Scholar
Kasting, J.F.: Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472494 (1988).CrossRefGoogle ScholarPubMed
Kasting, J.F.: Earth's early atmosphere. Science 259, 920926 (1993).CrossRefGoogle ScholarPubMed
Kasting, J.F. and Catling, D.: Evolution of a habitable earth. Annu. Rev. Astron. Astrophys. 41, 429463 (2003).CrossRefGoogle Scholar
Kasting, J.F.: Faint young sun redux. Nature 464, 687689 (2010).CrossRefGoogle Scholar
Keeling, C.D., Piper, S.C., Bacastow, R.B., Wahlen, M., and Whorf, T.P.: Exchanges of Atmospheric CO2 and 13CO2 with the Terrestrial Biosphere and Oceans from 1978 to 2000. I. Global Aspects (Scripps Institution of Oceanography, San Diego, 2001). Technical Report SIO Reference Series No. 01–06 (Revised from SIO Reference Series No. 00–21).Google Scholar
Kennett, J.P. and Stott, L.D.: Abrupt deep sea warming, paleoceanographic changes and benthic extinctions at the end of the Paleocene. Nature 353, 319322 (1991).CrossRefGoogle Scholar
Kerrick, D.M. and Caldeira, K.: Metamorphic CO2 degassing from orogenic belts. Chem. Geol. 145, 213232 (1998).CrossRefGoogle Scholar
Kirschvink, J.L., Gaidos, E.J., Bertani, E., Beukes, N.J., Gutzmer, J., Maepa, L.N., and Steinberger, R.E.: Paleoproterozoic snowball earth: Extreme climatic and geochemical global change and its biological consequences. Proc Natl Acad Sci U S A 97, 14001405 (2000).CrossRefGoogle ScholarPubMed
Knutti, R. and Hegerl, G.C.: The equilibrium sensitivity of the earth’s temperature to radiation changes. Nat. Geosci. 1, 735743 (2008).CrossRefGoogle Scholar
LeQuere, E.: Global carbon budget 2014. Earth Syst. Sci. Data Discuss. 7, 521610 (2014).Google Scholar
Levin, I., Naegler, T., Kromer, B., Diehl, M., Francey, R.J., Gomez-Pelaez, A.J., Steele, L.P., Wagenbach, D., Weller, R., and Worthy, D.E.: Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2 . Tellus 62B, 2646 (2010).CrossRefGoogle Scholar
Lowenstein, T.K., Kendall, B., and Anbar, A.D.: 8.21—The geologic history of seawater. In The Treatise on Geochemistry, Vol. 8, 2nd ed., Elsevier: 2014; pp. 569620.CrossRefGoogle Scholar
Machta, L.: Mauna Loa and global trends in air quality. Bull. Am. Meteorol. Soc. 53, 402420 (1972).2.0.CO;2>CrossRefGoogle Scholar
Maher, K. and Chamberlain, C.P.: Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science 343, 15021504 (2014).CrossRefGoogle ScholarPubMed
McCauley, S. and DePaolo, D.J.: The marine 87Sr/86Sr and ∂18O records, Himalayan alkalinity fluxes and Cenozoic climate models. In Tectonic Uplift and Climate Change, Ruddiman, W.F. ed.; Plenum Press, New York: 1997; pp. 427467.CrossRefGoogle Scholar
McInerney, F.A. and Wing, S.L.: The Paleocene-Eocene Thermal Maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39, 489516 (2011).CrossRefGoogle Scholar
McNeil, B.I., Matear, R.J., Key, R.M., Bullister, J.L., and Sarmiento, J.L.: Anthropogenic CO2 uptake by the ocean based on the global chlorofluorocarbon data set. Science 299, 235239 (2003).CrossRefGoogle ScholarPubMed
Morner, N-A. and Etiope, G.: Carbon degassing from the lithosphere. Global Planet Change 33, 185203 (2002).CrossRefGoogle Scholar
Monnin, E., Indermuhle, A., Dallenbach, A., Fluckiger, J., and Stauffer, B.: Atmospheric CO2 concentrations over the last glacial termination. Science 29, 112114 (2001).CrossRefGoogle Scholar
Naegler, T., Ciais, P., Rodgers, K., and Levin, I.: Excess radiocarbon constraints on air-sea gas exchange and the uptake of CO2 by the oceans. Geophys. Res. Lett. 33, L11802 (2006). doi: 10.1029/2005GL025408.CrossRefGoogle Scholar
Naegler, T. and Levin, I.: Biosphere-atmosphere gross carbon exchange flux and the δ13CO2 and ∆14CO2 disequilibria constrained by the biospheric excess radiocarbon inventory. J. Geophys. Res. 114, D17303 (2009).Google Scholar
Nakamori, T.: Global carbonate accumulation rates from Cretaceous to Present and their implications for the carbon cycle model. Isl. Arc 10, 18 (2001).CrossRefGoogle Scholar
National Research Council: America's Energy Future: Technology and Transformation, summary edition (National Academy Press, Washington, D.C. 2009); 184 pp.Google Scholar
National Research Council: Origin and Evolution of Earth: Research Questions for a Changing Planet (National Academy Press, Washington, D.C. 2008); 200 pp.Google Scholar
National Research Council: Climate Stabilization Targets: Emissions, Concentrations, and Impacts Over Decades to Millennia (National Academy Press, Washington, D.C. 2011); 298 pp.Google Scholar
National Research Council: Understanding Earth's Deep Past: Lessons for Our Climate Future (National Academy Press, Washington, D.C. 2011); 212 pp.Google Scholar
National Research Council: Climate Change: Evidence, Impacts, and Choices (National Academy Press, Washington, D.C. 2012); 38 pp.Google Scholar
Pacala, S. and Socolow, R.: Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science 305(5686), 968972 (2004).CrossRefGoogle ScholarPubMed
Pagani, M., Zachos, J.C., Freeman, K.H., Tipple, B., and Bohaty, S.: Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309, 600603 (2005).CrossRefGoogle ScholarPubMed
Patra, P.K., Maksyutov, S., and Nakazawa, T.: Analysis of atmospheric CO2 growth rates at Mauna Loa using CO2 fluxes derived from an inverse model. Tellus 57B, 357365 (2005).CrossRefGoogle Scholar
Pavlov, A.A., Kasting, J.F., Brown, L.L., Rages, K.A., and Freedman, R.: Greenhouse warming by CH4 in the atmosphere of early earth. J. Geophys. Res. 105, 11,98111,990 (2000).CrossRefGoogle ScholarPubMed
Pearson, P.N. and Palmer, M.R.: Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406, 695699 (2000).CrossRefGoogle ScholarPubMed
Pierrehumbert, R.T.: Infrared radiation and planetary temperature. Phys. Today 64, 3338 (2011).CrossRefGoogle Scholar
Pierrehumbert, R.T., Abbot, D.S., Voigt, A., and Koll, D.: Climate of the Neoproterozoic. Annu. Rev. Earth Planet. Sci. 39, 417460 (2011).CrossRefGoogle Scholar
Richards, M.A., Yang, W-S., Baumgardner, J.R., and Bunge, H-P.: Role of a low-viscosity zone in stabilizing plate tectonics: Implications for comparative terrestrial planetology. Geochem., Geophys., Geosyst. 2, (2001). doi: 10.1029/2000GC000115.CrossRefGoogle Scholar
Ridgwell, A. and Hargreaves, J.C.: Regulation of atmospheric CO2 by deep-sea sediments in an earth system model. Global Biogeochem. Cycles 21, GB2008 (2007).CrossRefGoogle Scholar
Ruddiman, W.F.: The Anthropocene. Annu. Rev. Earth Planet. Sci. 41, 4568 (2013).CrossRefGoogle Scholar
Sabine, C.L., Feely, R.A., Gruber, N., Key, R.M., and Lee, K.: The oceanic sink for anthropogenic CO2. Science 305, 367371 (2004).CrossRefGoogle ScholarPubMed
Sandberg, P.A.: Nonskeletal aragonite and pCO2 in the phanerozoic and proterozoic. In The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Vol. 32, American Geophysical Union Monograph: Washington, D.C. 1985; pp. 585594.Google Scholar
Sarmiento, J.L.: Ocean carbon cycle. Chem. Eng. News 71, 3043 (1993).CrossRefGoogle Scholar
Satish, U. Mendell, M.J., Shekhar, K., Hotchi, T., Sullivan, D., Streufert, S., and Fisk, W.J.: Is CO2 an indoor pollutant? direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ. Health Perspect. 120, 16711677 (2015).CrossRefGoogle Scholar
Schrag, D.P., Berner, R.A., Hoffman, P.F., and Halverson, G.P.: On the initiation of a snowball earth. Geochem., Geophys., Geosyst. 3(6), (2002). doi: 10.1029/2001GC000219.CrossRefGoogle Scholar
Sigman, D.M. and Boyle, E.A.: Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859869 (2000).CrossRefGoogle ScholarPubMed
Sleep, N.H., Zahnle, K., and Neuhoff, P.S.: Initiation of clement surface conditions on the early earth. Proc. Natl. Acad. Sci. U. S. A. 98, 36663672 (2001).CrossRefGoogle Scholar
Sleep, N.H., Bird, D.K., and Pope, E.: Paleontology of earth’s mantle. Annu. Rev. Earth Planet. Sci. 40, 277300 (2012).CrossRefGoogle Scholar
Schmitz, R.A.: The Earth’s carbon cycle. Chem. Eng. Educ. 36, 296304 (Fall 2002).Google Scholar
Staudigel, H.: Hydrothermal alteration processes in the oceanic crust. Treatise on Geochemistry 3, 511535 (2003).CrossRefGoogle Scholar
Walker, J.C.G., Hays, P.B., and Kasting, J.F.: A negative feedback mechanism for the long term stabilization of earth’s surface temperature. J. Geophys. Res. 86, 97769782 (1981).CrossRefGoogle Scholar
Wood, B., Li, J., and Shahar, A.: Carbon in the core: Its influence on the properties of core and mantle. Rev. Mineral. Geochem. 75, 231250 (2013).CrossRefGoogle Scholar
Wordsworth, R. and Pierrehumbert, R.: Hydrogen-nitrogen greenhouse warming in Earth’s early atmosphere. Science 339, 6467 (2013).CrossRefGoogle ScholarPubMed
Yu, J., Broecker, W.S., Elderfield, H., Jin, Z., McManus, J., and Zhang, F.: Loss of carbon from the deep sea since the last glacial maximum. Science 330, 10841087 (2010).CrossRefGoogle ScholarPubMed
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686693 (2001).CrossRefGoogle ScholarPubMed
Zachos, J.C., Dickens, G.R., and Zeebe, R.E.: An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279283 (2008).CrossRefGoogle ScholarPubMed
Zeebe, R.E.: History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annu. Rev. Earth Planet. Sci. 40, 141165 (2012).CrossRefGoogle Scholar
Zhang, Y.X. and Zindler, A.: Distribution and evolution of carbon and nitrogen in earth. Earth Planet. Sci. Lett. 117, 331345 (1993).CrossRefGoogle Scholar