Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-07T15:56:20.682Z Has data issue: false hasContentIssue false

BODY-MASS ESTIMATION IN PALEONTOLOGY: A REVIEW OF VOLUMETRIC TECHNIQUES

Published online by Cambridge University Press:  27 April 2017

Charlotte A. Brassey*
Affiliation:
The School of Science and the Environment, Manchester Metropolitan University, Manchester, M15 6BH, UK 〈[email protected]
Get access

Abstract

Body mass is a key parameter for understanding the physiology, biomechanics, and ecology of an organism. Within paleontology, body mass is a fundamental prerequisite for many studies considering body-size evolution, survivorship patterns, and the occurrence of dwarfism and gigantism. The conventional method for estimating fossil body mass relies on allometric scaling relationships derived from skeletal metrics of extant taxa, but the recent application of three-dimensional imaging techniques to paleontology (e.g., surface laser scanning, computed tomography, and photogrammetry) has allowed for the rapid digitization of fossil specimens. Volumetric body-mass estimation methods based on whole articulated skeletons are therefore becoming increasingly popular. Volume-based approaches offer several advantages, including the ability to reconstruct body-mass distribution around the body, and their relative insensitivity to particularly robust or gracile elements, i.e., the so-called ‘one bone effect.’ Yet their application to the fossil record will always be limited by the paucity of well-preserved specimens. Furthermore, uncertainties with regards to skeletal articulation, body density, and soft-tissue distribution must be acknowledged and their effects quantified. Future work should focus on extant taxa to improve our understanding of body composition and increase confidence in volumetric model input parameters.

Type
Research Article
Copyright
Copyright © 2017, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiello, L.C., and Wood, B.A., 1994, Cranial variables as predictors of hominine body mass: American Journal of Physical Anthropology, v. 95, p. 409426.Google Scholar
Alexander, R.M.N., 1983a, Allometry of the leg bones of moas (Dinornithes) and other birds: Journal of Zoology, v. 200, p. 215231.Google Scholar
Alexander, R.M.N., 1983b, Animal Mechanics: Oxford, UK, Blackwell Scientific, 301 p.Google Scholar
Alexander, R.M.N., 1983c, On the massive legs of a moa (Pachyornis elephantopus, Dinornithes): Journal of Zoology, v. 201, p. 363376.Google Scholar
Alexander, R.M.N., 1985, Mechanics of posture and gait of some large dinosaurs: Zoological Journal of the Linnean Society, v. 83, p. 125.Google Scholar
Allen, V., Bates, K.T., Li, Z., and Hutchinson, J.R., 2013, Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs: Nature, v. 497, p. 104107.Google Scholar
Anderson, J.F., Hall-Martin, A., and Russell, D.A., 1985, Long-bone circumference and weight in mammals, birds and dinosaurs: Journal of Zoology, v. 207, p. 5361.Google Scholar
Attard, M.R.G., Wilson, L.A.B., Worthy, T.H., Scofield, P., Johnston, P., Parr, W.C.H., and Wroe, S., 2016, Moa diet fits the bill: Virtual reconstruction incorporating mummified remains and prediction of biomechanical performance in avian giants: Proceedings of the Royal Society of London B, Biological Sciences, v. 283, art. 20152043, DOI: 10.1098/rspb.2015.2043.Google Scholar
Auat Cheein, F.A., and Guivant, J., 2014, SLAM-based incremental convex hull processing approach for treetop volume estimation: Computers and Electronics in Agriculture, v. 102, p. 1930.Google Scholar
Barber, C.B., Dobkin, D.P., and Huhdanpaa, H.T., 1996, The quickhull algorithm for convex hulls: ACM Transactions on Mathematical Software, v. 22, p. 469483.Google Scholar
Barber, C.B., Habel, K., Grasman, R., Gramacy, R., Stahel, A., and Sterratt, D., 2015, Geometry: Mesh generation and surface tesselation: https://cran.r-project.org/web/packages/geometry/index.html (accessed July 2016).Google Scholar
Bastir, M., Higuero, A., Ríos, L., and Martínez, D.G., 2014, Three-dimensional analysis of sexual dimorphism in human thoracic vertebrae: Implications for the respiratory system and spine morphology: American Journal of Physical Anthropology, v. 155, p. 513521.Google Scholar
Basu, C., Falkingham, P.L., and Hutchinson, J.R., 2016, The extinct, giant giraffid Sivatherium giganteum: Skeletal reconstruction and body mass estimation: Biology Letters, v. 12, art. 20150940, DOI: 10.1098/rsbl.2015.0940.Google Scholar
Bates, K.T., Falkingham, P.L., Breithaupt, B.H., Hodgetts, D., Sellers, W.I., and Manning, P.L., 2009a, How big was “Big Al”? Quantifying the effect of soft tissue and osteological unknowns on mass predictions for Allosaurus (Dinosauria: Theropoda): Palaeontologia Electronica, v. 12, no. 3, art. 14A, p. 133A. http://palaeo-electronica.org/2009_3/186/index.html.Google Scholar
Bates, K.T., Falkingham, P.L., Macaulay, S., Brassey, C., and Maidment, S.C.R., 2015, Downsizing a giant: Re-evaluating Dreadnoughtus body mass: Biology Letters, v. 11, art. 20150215, DOI: 10.1098/rsbl.2015.0215.Google Scholar
Bates, K.T., Manning, P.L., Hodgetts, D., and Sellers, W.I., 2009b, Estimating mass properties of dinosaurs using laser imaging and 3D computer modeling: PLoS ONE, v. 4, art. e4532, DOI: 10.1371/journal.pone.0004532.Google Scholar
Bates, K.T., Manning, P.L., Margetts, L., and Sellers, W.I., 2010, Sensitivity analysis in evolutionary robotic simulations of bipedal dinosaur running: Journal of Vertebrate Paleontology, v. 30, p. 458466.Google Scholar
Benson, R.B.J., Campione, N.E., Carrano, M.T., Mannion, P.D., Sullivan, C., Upchurch, P., and Evans, D.C., 2014, Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage: PLoS Biology, v. 12, art. e1001853, DOI: 10.1371/journal.pbio.1001853.Google Scholar
Bergeron, P., 2007, Parallel lasers for remote measurements of morphological traits: Journal of Wildlife Management, v. 71, p. 289292.Google Scholar
Blumenbach, J.F., 1799, Handbuch der Naturgeschichte, 6th ed., Göttingen, Germany, Dieterich, 668 p.Google Scholar
Braddy, S.J., Poschmann, M., and Tetlie, O.E., 2008, Giant claw reveals the largest ever arthropod: Biology Letters, v. 4, p. 106109.Google Scholar
Bramwell, C.D., and Whitfield, G.R., 1974, Biomechanics of Pteranodon : Philosophical Transactions of the Royal Society B, Biological Sciences, v. 267, p. 503581.Google Scholar
Brassey, C.A., and Gardiner, J., 2015, An advanced shape-fitting algorithm applied to quadrupedal mammals: Improving volumetric mass estimates: Royal Society Open Science, v. 2, art. 50302, DOI: 10.1098/rsos.150302.Google Scholar
Brassey, C.A., Holdaway, R.N., Packham, A.G., Anné, J., Manning, P.L., and Sellers, W.I., 2013, More than one way of being a moa: Differences in leg bone robustness map divergent evolutionary trajectories in Dinornithidae and Emeidae (Dinornithiformes): PLoS ONE, v. 8, art. e82668, DOI: 10.1371/journal.pone.0082668.Google Scholar
Brassey, C.A., Maidment, S.C.R., and Barrett, P.M., 2015, Body mass estimates of an exceptionally complete Stegosaurus (Ornithischia: Thyreophora): Comparing volumetric and linear bivariate mass estimation methods: Biology Letters, v. 11, art. 20140984, DOI: 10.1098/rsbl.2014.0984.Google Scholar
Brassey, C.A., O’Mahoney, T.G., Kitchener, A.C., Manning, P.L., and Sellers, W.I., 2016, Convex-hull mass estimates of the dodo (Raphus cucullatus): Application of a CT-based mass estimation technique: PeerJ, v. 4, art. e1432, DOI: 10.7717/peerj.1432.Google Scholar
Brassey, C.A., and Sellers, W.I., 2014, Scaling of convex hull volume to body mass in modern primates, non-primate mammals and birds: PLoS ONE, v. 9, art. e91691, DOI: 10.1371/journal.pone.0091691.CrossRefGoogle ScholarPubMed
Brower, B.C., and Veinus, J., 1981, Allometry in pterosaurs: The University of Kansas Paleontology Contributions, v. 105, p. 132.Google Scholar
Buchner, H.H.F., Savelberg, H.H.C.M., Schamhardtt, H.C., and Barneveld, A., 1997, Inertial properties of Dutch Warmblood horses: Journal of Biomechanics, v. 30, p. 653658.Google Scholar
Campione, N.E., and Evans, D.C., 2012, A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods: BMC Biology, v. 10, art. 60, DOI: 10.1186/1741-7007-10-60.Google Scholar
Christiansen, P., 1997, Locomotion in sauropod dinosaurs: Gaia, v. 14, p. 4575.Google Scholar
Christiansen, P., 1998, Strength indicator values of theropod long bones, with comments on limb proportions and cursorial potential: Gaia, v. 15, p. 241255.Google Scholar
Christiansen, P., and Bonde, N., 2002, Limb proportions and avian terrestrial locomotion: Journal of Ornithology, v. 143, p. 356371.Google Scholar
Christiansen, P., and Paul, G., 2001, Limb bone scaling, limb proportions, and bone strength in neoceratopsian dinosaurs: Gaia, v. 16, p. 1329.Google Scholar
Cignoni, P., Corsini, M., and Ranzuglia, G., 2008, Meshlab: An open-source 3D mesh processing system: Ercim News, v. 73, p. 4546.Google Scholar
Colbert, E., 1962, The weights of dinosaurs: American Museum Novitates, v. 2075, p. 116.Google Scholar
Cuvier, G., 1796, Notice sur le squelette d’une très-grande espèce de quadrupède inconnue jusqu’à présent, trouvé au Paraquay, et déposé au cabinet d’histoire naturelle de Madrid: Magasin Encyclopèdique: ou Journal des Sciences, des Lettres et des Arts, v. 1, p. 303310. v. 2, p. 227–228.Google Scholar
Damuth, J., and MacFadden, B.J., 1990, Body Size in Mammalian Paleobiology: Estimation and Biological Implications: Cambridge, UK, Cambridge University Press, 412 p.Google Scholar
de Bruyn, P.J.N., Bester, M.N., Carlini, A.J., and Oosthuizen, C.W., 2009, How to weigh an elephant seal with one finger: A simple three-dimensional photogrammetric application: Aquatic Biology, v. 5, p. 3139.Google Scholar
Dickison, M., 2007, The Allometry of Giant Flightless Birds [PhD Thesis]: Durham, North Carolina, Duke University, 89 p.Google Scholar
Dunning, J., 2007, CRC Handbook of Avian Body Masses: Boca Raton, Florida, CRC Press, 672 p.Google Scholar
Durban, J.W., and Parsons, K.M., 2006, Laser-metrics of free-ranging killer whales: Marine Mammal Science, v. 22, p. 735743.Google Scholar
Erickson, G.M., and Tumanova, T.A., 2000, Growth curve of Psittacosaurus mongoliensis Osborn (Geratopsia: Psittacosauridae) inferred from long bone histology: Zoological Journal of the Linnean Society, v. 130, p. 551566.Google Scholar
Falconer, H., and Cautley, P.T., 1836, Sivatherium giganteum, a new fossil ruminant genus, from the valley of the Markanda, in the Sivalik branch of the sub-Himalayan Mountains: Journal of the Asiatic Society of Bengal, v. 5, p. 3850.Google Scholar
Fariña, R.A., Vizcaíno, S.F., and Bargo, M.S., 1998, Body mass estimations in Lujanian (late Pleistocene–early Holocene of South America) mammal megafauna: Matozoologia Neotropical, v. 5, p. 87108.Google Scholar
Fariña, R.A, Vizcaíno, S.F., and De Iuliis, G., 2013, Megafauna: Giant Beasts of Pleistocene South America: Bloomington, Indiana, Indiana University Press, 448 p.Google Scholar
Farlow, J.O., Smith, M.B., and Robinson, J.M., 1995, Body mass, bone “strength indicator” and cursorial potential of Tyrannosaurus rex : Journal of Vertebrate Paleontology, v. 15, p. 713725.Google Scholar
Field, D.J., Lynner, C., Brown, C., and Darroch, S.A.F, 2013, Skeletal correlates for body mass estimation in modern and fossil flying birds: PLoS ONE, v. 8, art. e82000, DOI: 10.1371/journal.pone.0082000.Google Scholar
Garcia-Martinez, D., Barash, A., Recheis, W., Utrilla, C., Torres Sinchez, I., Garcia Rio, F., and Bastir, M., 2014, On the chest size of Kebara 2: Journal of Human Evolution, v. 70, p. 6972.Google Scholar
Garwood, R.J., and Dunlop, J.A., 2014, Three-dimensional reconstruction and the phylogeny of extinct chelicerate orders: PeerJ, v. 2, art. e641, DOI: 10.7717/peerj.641.Google Scholar
Garwood, R.J., Dunlop, J.A., and Sutton, M.D., 2009, High-fidelity X-ray micro-tomography reconstruction of siderite-hosted Carboniferous arachnids: Biology Letters, v. 5, p. 841844.Google Scholar
Gregory, W.K., 1905, The weight of the Brontosaurus : Science, v. 22, p. 572.Google Scholar
Gunga, H.-C., Kirsch, K.A., Baartz, F., Rocker, L., Heinrich, W.-D., Lisowski, W., Wiedemann, A., and Albertz, J., 1995, New data on the dimensions of Brachiosaurus brancai and their physiological implications: Naturwissenschaften, v. 82, p. 190192.Google Scholar
Gunga, H.-C., Kirsch, K., Rittweger, J., Rocker, L., Clarke, A., Albertz, J., Wiedemann, A., Mokry, S., Suthau, T., Wehr, A., Heinrich, W.-D., and Schultze, H.-P., 1999, Body size and body volume distribution in two sauropods from the Upper Jurassic of Tendaguru/Tansania (East Africa): Mitteilungen aus dem Museum für Naturkunde in Berlin, Geowissenschaftliche Reihe, v. 2, p. 91102.Google Scholar
Gunga, H.-C., Suthau, T., Bellmann, A., Friedrich, A., Schwanebeck, T., Stoinski, S., Trippel, T., Kirsch, K., and Hellwich, O., 2007, Body mass estimations for Plateosaurus engelhardti using laser scanning and 3D reconstruction methods: Naturwissenschaften, v. 94, p. 623630.Google Scholar
Gunga, H.-C., Suthau, T., Bellmann, A., Stoinski, S., Friedrich, A., Trippel, T., Kirsch, K., and Hellwich, O., 2008, A new body mass estimation of Brachiosaurus brancai Janensch, 1914 mounted and exhibited at the Museum of Natural History (Berlin, Germany): Fossil Record, v. 11, p. 3338.Google Scholar
Haynes, G., 1991, Mammoths, Mastodonts, and Elephants: Cambridge, UK, Cambridge University Press, 428 p.Google Scholar
Hazlehurst, G.A., 1991, The Morphometric and Flight Characteristics of the Pterosauria: Bristol, UK, University of Bristol, 274 p.Google Scholar
Hazlehurst, G.A., and Rayner, J.M., 1992, Flight characteristics of Triassic and Jurassic Pterosauria: An appraisal based on wing shape: Paleobiology, v. 18, p. 447463.CrossRefGoogle Scholar
Henderson, D.M., 1999, Estimating the masses and centers of mass of extinct animals by 3-D mathematical slicing: Paleobiology, v. 25, p. 88106.Google Scholar
Henderson, D.M., 2004, Tipsy punters: Sauropod dinosaur pneumaticity, buoyancy, and aquatic habits: Biology Letters, v. 271, p. 180183.Google Scholar
Henderson, D.M., 2006, Burly gaits: Centers of mass, stability, and the trackways of sauropod dinosaurs: Journal of Vertebrate Paleontology, v. 26, p. 907921.Google Scholar
Henderson, D.M., 2010, Pterosaur body mass estimates from three-dimensional mathematical slicing: Journal of Vertebrate Paleontology, v. 30, p. 768785.Google Scholar
Henderson, D.M., and Snively, E., 2004, Tyrannosaurus en pointe: Allometry minimized the rotational inertia of large carnivorous dinosaurs: Biology Letters, v. 271, p. 5760.Google Scholar
Heptonstall, W.B., 1971, An analysis of the flight of the Cretaceous pterodactyl Pteranodon ingens (March): Scottish Journal of Geology, v. 7, p. 6178.Google Scholar
Holland, W.J., 1915, A new species of Apatosaurus : Annals of the Carnegie Museum, v. 10, p. 143145.Google Scholar
Hone, D.W.E., and Henderson, D.M., 2014, The posture of floating pterosaurs: Ecological implications for inhabiting marine and freshwater habitats: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 394, p. 8998.Google Scholar
Hurlburt, G., 1999, Comparison of body mass estimation techniques, using Recent reptiles and the pelycosaur Edaphosaurus boanerges : Journal of Vertebrate Paleontology, v. 19, p. 338350.Google Scholar
Hutchinson, J.R., Bates, K.T., Molnar, J., Allen, V., and Makovicky, P.J., 2011, A computational analysis of limb and body dimensions in Tyrannosaurus rex with implications for locomotion, ontogeny, and growth: PLoS ONE, v. 6, art. e26037, DOI: 10.1371/journal.pone.0026037.Google Scholar
Hutchinson, J.R., Ng-Thow-Hing, V., and Anderson, F.C., 2007, A 3D interactive method for estimating body segmental parameters in animals: Application to the turning and running performance of Tyrannosaurus rex : Journal of Theoretical Biology, v. 246, p. 660680.Google Scholar
Janensch, W., 1914, Übersicht über der Wirbeltierfauna der Tendaguru-Schichten nebst einer kurzen Charakterisierung der neu aufgefuhrten Arten von Sauropoden: Archiv fur Biontologie, v. 3, p. 81110.Google Scholar
Jiménez, P., Thomas, F., and Torras, C., 2001, 3D collision detection: A survey: Computers & Graphics, v. 25, p. 269285.Google Scholar
Jones, T.D., Farlow, J.O., , Ruben, J.A., Henderson, D.M., and Hillenius, W.J., 2000, Cursoriality in bipedal archosaurs: Nature, v. 406, p. 716718.Google Scholar
Kagaya, M., Ogihara, N., and Nakatsukasa, M., 2008, Morphological study of the anthropoid thoracic cage: Scaling of thoracic width and an analysis of rib curvature: Primates, v. 49, p. 8999.Google Scholar
Kaiser, A., and Klok, J., 2008, Do giant claws mean giant bodies? An alternative view on exaggerated scaling relationships: Biology letters, v. 4, p. 279280.Google Scholar
Kaufman, J., and Smith, R., 2002, Statistical issues in the prediction of body mass for Pleistocene canids: Lethaia, v. 35, p. 32–334.Google Scholar
Kitchener, A.C., 1993, The external appearance of the dodo, Raphus cucullatus : Archives of Natural History, v. 20, p. 279301.Google Scholar
Kuzawa, C.W., 1998, Adipose tissue in human infancy and childhood: An evolutionary perspective: Yearbook of Physical Anthropology, v. 41, p. 177209.Google Scholar
Lacovara, K.J., Lamanna, M.C., Ibiricu, L.M., Poole, J.C., Schroeter, E.R., Ullmann, P.V., Voegele, K.K., Boles, Z.M., Carter, A.M., Fowler, E.K., Egerton, V.M., Moyer, A.E., Coughenour, C.L., Schein, J.P., Harris, J.D., Martínez, R.D., and Novas, F.E., 2014, A gigantic, exceptionally complete titanosaurian sauropod dinosaur from southern Patagonia, Argentina: Scientific Reports, v. 4, art. 6196, DOI: 10.1038/srep06196.Google Scholar
Laws, R.M., Parker, I.S.C., and Johnstone, R.C.B., 1975, Elephants and Their Habitats: Oxford, UK, Clarendon Press, 376 p.Google Scholar
Lawson, D.A., 1975, Could pterosaurs fly?: Science, v. 188, p. 676678.Google Scholar
Lindgard, K., Stokkan, K.A., and Naslund, S., 1995, Annual changes in body mass in captive Svalbard ptarmigan: Role of changes in locomotor activity and food intake: Journal of Comparative Physiology B, v. 165, p. 445449.Google Scholar
Linnaeus, C., 1758, Systema Naturae per Regna tria Naturae, secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentis, Synonymis, Locis, 10th ed.: Stockholm, Sweden, Laurentii, Slavi, 824 p.Google Scholar
Maidment, S.C.R., Henderson, D.M., and Barrett, P.M., 2014, What drove reversions to quadrupedality in ornithischian dinosaurs? Testing hypotheses using centre of mass modeling: Naturwissenschaften, v. 101, p. 9891001.Google Scholar
Mallison, H., 2010, The digital Plateosaurus I: Body mass, mass distribution and posture assessed using CAD and CAE on a digitally mounted complete skeleton: Palaeontologia Electronica, v. 13, art. 8A, http://palaeo-electronica.org/2010_2/198/index.html.Google Scholar
Marsh, O.C., 1877, Notice of new dinosaurian reptiles from the Jurassic Formation: American Journal of Science, v. 3, p. 513514.Google Scholar
Marsh, O.C., 1879, Notice of new Jurassic reptiles: American Journal of Science, v. 108, p. 501505.Google Scholar
Marsh, O.C., 1887, Principal characters of American Jurassic dinosaurs, part IX, The skull and dermal armor of Stegosaurus : American Journal of Science, series 3, v. 34, p. 413417.Google Scholar
Martin-Silverstone, E., Vincze, O., McCann, R., Jonsson, C.H.W., Palmer, C., Kaiser, G., and Dyke, G., 2015, Exploring the relationship between skeletal mass and total body mass in birds: PLoS ONE, v. 10, art. e0141794, DOI: 10.1371/journal.pone.0141794.Google Scholar
Mazzetta, G., Christiansen, P., and Farina, R., 2004, Giants and bizarres: Body size of some southern South American Cretaceous dinosaurs: Historical Biology, v. 16, p. 113, DOI: 10.1080/08912960410001715132.Google Scholar
McKinney, M.L., 1997, Extinction vulnerability and selectivity: Combining ecological and paleontological views: Annual Review of Ecology and Systematics, v. 28, p. 495516.Google Scholar
Millien, V., and Bovy, H., 2010, When teeth and bones disagree: Body mass estimation of a giant extinct rodent: Journal of Mammalogy, v. 91, p. 1118.Google Scholar
Moncunill-Solé, B., Jordana, X., Marín-Moratalla, N., Moyà-Solà, S., and Köhler, M., 2014, How large are the extinct giant insular rodents? New body mass estimations from teeth and bones: Integrative Zoology, v. 9, p. 197212.Google Scholar
Mones, A., 1980, Un Neoepiblemidae del Plioceno Medio (Formacion Urumaco) de Venezuela (Mammalia: Rodentia: Caviomorpha): Ameghiniana, v. 17, p. 277279.Google Scholar
Montani, R., 2001, Estimating body mass from silhouettes: Testing the assumption of elliptical body cross-sections: Paleobiology, v. 27, p. 735750.Google Scholar
Naglik, C., Rikhtegar, F., and Klug, C., 2015, Buoyancy of some Palaeozoic ammonoids and their hydrostatic properties based on empirical 3D-models: Lethaia, v. 49, p. 312.Google Scholar
Olson, V.A., and Turvey, S.T., 2013, The evolution of sexual dimorphism in New Zealand giant moa (Dinornis) and other ratites: Proceedings of the Royal Society B, Biological Sciences, v. 280, art. 20130401, DOI: 10.1098/rspb.2013.0401.Google Scholar
Osborn, H.E., 1905, Tyrannosaurus and other Cretaceous carnivorous dinosaurs: Bulletin of the American Museum of Natural History, v. 21, p. 259265.Google Scholar
Owen, R., 1846, Proceedings of a meeting: Owen read his second memoir on Dinornis remains: Proceedings of the Zoological Society London, v. 14, no. 160, p. 46–49.Google Scholar
Owen, R., 1856, On Dinornis Part VII: Containing a description of the bones of the leg and foot of the Dinornis elephantopus: Proceedings of the Zoological Society of London, v. 1856, p. 54–61.Google Scholar
Packard, G.C., Boardman, T.J., and Birchard, G.F., 2009, Allometric equations for predicting body mass of dinosaurs: Journal of Zoology, v. 279, p. 102110.Google Scholar
Pagel, M., 1991, Constructing “everyanimal”: Nature, v. 351, p. 532533.Google Scholar
Paul, G., 1997, Dinosaur models: The good, the bad, and using them to estimate the mass of dinosaurs, in Wolberg, D.L., Stump, E., and Rosenberg, E., eds., Dinofest International: Proceedings of a Symposium held at Arizona State University: Philadelphia, Pennsylvania, Academy of Natural Sciences, p. 129–142.Google Scholar
Paul, G., 2010, The Princeton Field Guide to Dinosaurs: Princeton, New Jersey, Princeton University Press, 320 p.Google Scholar
Portugal, S.J., Green, J.A., and Butler, P.J., 2007, Annual changes in body mass and resting metabolism in captive barnacle geese (Branta leucopsis): The importance of wing moult: The Journal of Experimental Biology, v. 210, p. 13911397.Google Scholar
Postma, M., Bester, M.N., and de Bruyn, P.J.N., 2013, Spatial variation in female southern elephant seal mass change assessed by an accurate non-invasive photogrammetry method: Antarctic Science, v. 25, p. 731740.Google Scholar
Postma, M., Tordiffe, A.S.W., Hofmeyr, M.S., Reisinger, R.R., Bester, L.C., Buss, P.E., and de Bruyn, P.J.N., 2015, Terrestrial mammal three-dimensional photogrammetry: Multispecies mass estimation: Ecosphere, v. 6, p. 116.Google Scholar
Powers, D.R., 1991, Diurnal variation in mass, metabolic rate, and respiratory quotient in Anna’s and Costa’s hummingbirds: Physiological Zoology, v. 64, p. 850870.Google Scholar
Prange, H.D., Anderson, J.F., and Rahn, H., 1979, Scaling of skeletal mass to body mass in birds and mammals: American Naturalist, v. 113, p. 103122.Google Scholar
Roth, V.L., 1990, Insular dwarf elephants: A case study in body mass estimation and ecological inference, in Damuth, J., and MacFadden, B., eds., Body Size in Mammalian Paleobiology: Estimates and Biological Implications: Cambridge, UK, Cambridge University Press, p. 151180.Google Scholar
Rothman, J.M., Chapman, C.A., Twinomugisha, D., Wasserman, M.D., Lambert, J.E., and Goldberg, T.L., 2008, Measuring physical traits of primates remotely: The use of parallel lasers: American Journal of Primatology, v. 70, p. 15.Google Scholar
Ruff, C.B., Scott, W.W., and Liu, A.Y., 1991, Articular and diaphyseal remodeling of the proximal femur with changes in body mass in adults: American Journal of Physical Anthropology, v. 86, p. 397413.Google Scholar
Sanchez-Villagra, M.R., Aguilera, O., and Horovitz, I., 2003, The anatomy of the world’s largest extinct rodent: Science, v. 301, p. 17081710.Google Scholar
Schaub, M., and Jenni, L., 2000, Body mass of six long-distance migrant passerine species along the autumn migration route: Journal für Ornithologie, v. 141, p. 441460.Google Scholar
Schmidt-Nielsen, K., 1984, Scaling: Why is Animal Size So Important?: Cambridge, UK, Cambridge University Press, 241 p.Google Scholar
Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, I., Bradlow, H., Pan, J., Patil, S., Goldberg, K., and Abbeel, P., 2014, Motion planning with sequential convex optimization and convex collision checking: The International Journal of Robotics Research, v. 33, p. 12511270.Google Scholar
Scull, P., Palmer, M., Frey, F., and Kraly, E., 2012, A comparison of two home range modeling methods using Ugandan mountain gorilla data: International Journal of Geographical Information Science, v. 26, p. 21112121.Google Scholar
Seebacher, F., 2001, A new method to calculate allometric length-mass relationships of dinosaurs: Journal of Vertebrate Paleontology, v. 21, p. 5160.Google Scholar
Sellers, W.I., Hepworth-Bell, J., Falkingham, P.L., Bates, K.T., Brassey, C.A., Egerton, V.M., and Manning, P.L., 2012, Minimum convex hull mass estimations of complete mounted skeletons: Biology Letters, v. 8, p. 842845.Google Scholar
Sellers, W.I., and Manning, P.L., 2007, Estimating dinosaur maximum running speeds using evolutionary robotics: Proceedings of the Royal Society B, Biological Sciences, v. 274, p. 2711–2716.Google Scholar
Sellers, W.I., Margetts, L., Coria, R.A., and Manning, P.L., 2013, March of the titans: The locomotor capabilities of sauropod dinosaurs: PLoS ONE, v. 8, art. e78733, DOI: 10.1371/journal.pone.0078733.Google Scholar
Silva, M., and Downing, J.A., 1995, CRC Handbook of Mammalian Body Masses: Boca Raton, Florida, CRC Press, 359 p.Google Scholar
Smith, R.J., 1993, Logarithmic transformation bias in allometry: American Journal of Physical Anthropology, v. 90, p. 215228.Google Scholar
Smith, R.J., 2002, Estimation of body mass in paleontology: Journal of Human Evolution, v. 43, p. 271287.Google Scholar
Smith, R.J., 2009, Use and misuse of the reduced major axis for line-fitting: American Journal of Physical Anthropology, v. 140, p. 476486.Google Scholar
Snively, E., Cotton, J.R., Ridgely, R., and Witmer, L.M., 2013, Multibody dynamics model of head and neck function in Allosaurus (Dinosauria, Theropoda): Palaeontologia Electronica, v. 16, no. 2, art. 11A, http://palaeo-electronica.org/content/2013/389-allosaurus-feeding.Google Scholar
Spocter, M.A., and Manger, P.R., 2007, The use of cranial variables for the estimation of body mass in fossil hominins: American Journal of Physical Anthropology, v. 134, p. 92105.Google Scholar
Stoinski, S., Suthau, T., and Gunga, H.-C., 2011, Reconstructing body volume and surface area of dinosaurs using laser scanning and photogrammetry, in Klein, N., Remes, K., Gee, C.T., and Sander, P.M., eds., Biology of Sauropod Dinosaurs: Understanding the Life of Giants: Bloomington, Indiana, Indiana University Press, p. 94104.Google Scholar
Sutton, M.D., Rahman, I.A., and Garwood, R.J., 2014, Techniques for Virtual Palaeontology: Chichester, UK, John Wiley & Sons, 200 p.Google Scholar
Therrien, F., and Henderson, D.M., 2007, My theropod is bigger than yours…or not: Estimating body size from skull length in theropods: Journal of Vertebrate Paleontology, v. 27, p. 108115.Google Scholar
Tschopp, E., Mateus, O., and Benson, R.B.J., 2015, A specimen-level phylogenetic analysis and taxonomic revision of Diplodocidae (Dinosauria, Sauropoda): PeerJ, v. 3, art. e857, DOI: 10.7717/peerj.857.Google Scholar
von Meyer, H., 1837, Briefliche Mitteilung an Prof. Bronn über Plateosaurus engelhardti : Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefakten-Kunde, v. 1837, p. 316.Google Scholar
Waite, J.N., Schrader, W.J., Mellish, J.E., and Horning, M., 2007, Three-dimensional photogrammetry as a tool for estimating morphometrics and body mass of Steller sea lions: Canadian Journal of Fisheries and Aquatic Sciences, v. 64, p. 296303.Google Scholar
Wiedemann, A., Suthau, T., and Albertz, J., 1999, Photogrammetric survey of dinosaur skeletons: Fossil Record, v. 2, p. 113119.Google Scholar
Winker, K., 2004, Natural history museums in a postbiodiversity era: Bioscience, v. 54, p. 455459.Google Scholar
Witton, M., and Habib, M., 2010, On the size and flight diversity of giant pterosaurs, the use of birds as pterosaur analogues and comments on pterosaur flightlessness: PLoS ONE, v. 5, art. e13982, DOI: 10.1371/journal.pone.0013982.Google Scholar
Witton, M.P., 2008, A new approach to determining pterosaur body mass and its implications for pterosaur flight: Zitteliana, v. B28, p. 143158.Google Scholar
Wootton, R. J., and Kukalová-Peck, J., 2000, Flight adaptations in Palaeozoic Palaeoptera (Insecta): Biological Reviews, v. 75, p. 129167.Google Scholar
Worthy, T., and Scofield, R., 2012, Twenty-first century advances in knowledge of the biology of moa (Aves: Dinornithiformes): a new morphological analysis and moa diagnoses revised: New Zealand Journal of Zoology, v. 39, p. 87153.Google Scholar
Wroe, S., Crowther, M., Dortch, J., and Chong, J., 2004, The size of the largest marsupial and why it matters: Biology Letters, v. 271, p. S34S36.Google Scholar
Wroe, S., Myers, T., Seebacher, F., Kear, B., Gillespie, A., Crowther, M., and Salisbury, S., 2003, An alternative method for predicting body mass: The case of the Pleistocene marsupial lion: Paleobiology, v. 29, p. 403411.Google Scholar