Hostname: page-component-669899f699-swprf Total loading time: 0 Render date: 2025-04-24T11:21:34.717Z Has data issue: false hasContentIssue false

Factors governing Fe2+-catalyzed transformation of ferrihydrite associated with kaolinite under anoxic conditions

Published online by Cambridge University Press:  20 November 2024

Cong Wu
Affiliation:
Yuelushan Laboratory, College of Resources, Hunan Agricultural University, Changsha 410128, China
Shuai Wang
Affiliation:
Yuelushan Laboratory, College of Resources, Hunan Agricultural University, Changsha 410128, China
Wenjuan Liao
Affiliation:
Yuelushan Laboratory, College of Resources, Hunan Agricultural University, Changsha 410128, China
Hao-Jie Cui*
Affiliation:
Yuelushan Laboratory, College of Resources, Hunan Agricultural University, Changsha 410128, China
*
Corresponding author: Hao-Jie Cui; Email: [email protected]

Abstract

Fe2+-catalyzed transformation of poorly crystalline ferrihydrite into highly crystalline forms is critical in the biogeochemical cycles of Fe, nutrients, and trace elements. The co-existence of ferrihydrite and kaolinite is widespread in soils of tropical and subtropical regions. In this investigation, three associations of ferrihydrite–kaolinite with ratios of 10, 30, and 50% (10% Fhy–Kln, 30% Fhy–Kln, and 50% Fhy–Kln) were examined to study the impact of the initial Fe2+ concentration and pH on Fe2+-catalyzed transformation under anoxic conditions. The findings reveal that the ferrihydrite in the 10% Fhy–Kln associations has the smallest particle size and the largest number of surface hydroxyl groups. At 0.5 mM Fe2+ and pH 7.5, ferrihydrite underwent transformation into lepidocrocite, with the presence of kaolinite promoting the formation of goethite. Moreover, the presence of kaolinite influenced the morphology of the resulting transformation products. A decrease in pH hindered the transformation of ferrihydrite, while an increase in Fe2+ concentration resulted in the formation of magnetite. The impact of kaolinite in the association system on the transformations of ferrihydrite occurs primarily through alteration of the properties of ferrihydrite during its formation process.

Type
Original Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aeppli, M., Kaegi, R., Kretzschmar, R., Voegelin, A., Hofstetter, T.B., & Sander, M. (2019). Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite transformation into goethite and magnetite. Environmental Science & Technology, 53, 35683578. https://doi.org/10.1021/acs.est.8b07190CrossRefGoogle ScholarPubMed
Bhattacharyya, K.G., & Gupta, S.S. (2009). Calcined tetrabutylammonium kaolinite and montmorillonite and adsorption of Fe(II), Co(II) and Ni(II) from solution. Applied Clay Science, 46, 216221. https://doi.org/10.1016/j.clay.2009.08.006CrossRefGoogle Scholar
Cai, X., ThomasArrigo, L.K., Fang, X., Bouchet, S., Cui, Y., & Kretzschmar, R. (2020). Impact of organic matter on microbially-mediated reduction and mobilization of arsenic and iron in arsenic(V)-bearing ferrihydrite. Environmental Science & Technology, 55, 13191328. https://doi.org/10.1021/acs.est.0c05329CrossRefGoogle ScholarPubMed
Day, P.R. (1965). Particle fractionation and particle‐size analysis. Methods of Soil Analysis, 9, 545567. https://doi.org/10.2134/agronmonogr9.1.c43Google Scholar
Eren, E., & Afsin, B. (2008). An investigation of Cu(II) adsorption by raw and acid-activated bentonite: a combined potentiometric, thermodynamic, XRD, IR, DTA study. Journal of Hazardous Materials, 151, 682691. https://doi.org/10.1016/j.jhazmat.2007.06.040CrossRefGoogle ScholarPubMed
Fan, Q., Wang, L., Fu, Y., & Wang, Z. (2023). Impacts of coexisting mineral on crystallinity and stability of Fe(II) oxidation products: implications for neutralization treatment of acid mine drainage. Journal of Hazardous Materials, 442, 130060. https://doi.org/10.1016/j.jhazmat.2022.130060CrossRefGoogle ScholarPubMed
Gilkes, R.J., & Nattaporn, P. (2016). How the unique properties of soil kaolin affect the fertility of tropical soils. Applied Clay Science, 131, 100106. https://doi.org/10.1016/j.clay.2016.01.007CrossRefGoogle Scholar
Gu, Q., Liu, J., Yang, Y., Zhu, R., Ma, L., Liang, X., Long, S., Zhu, J., & He, H. (2022). The different effects of sulfate on the adsorption of REEs on kaolinite and ferrihydrite. Applied Clay Science, 221, 106468. https://doi.org/10.1016/j.clay.2022.106468CrossRefGoogle Scholar
Gu, X., & Evans, L.J. (2008). Surface complexation modelling of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) adsorption onto kaolinite. Geochimica et Cosmochimica Acta, 72, 267276. https://doi.org/10.1016/j.gca.2007.09.032CrossRefGoogle Scholar
Han, B., Liu, J., Zhu, R., & Chen, Q. (2024). Clay minerals inhibit the release of Cd(II) during the phase transformation of Cd(II)-ferrihydrite coprecipitates. Journal of Hazardous Materials, 462, 132723. https://doi.org/10.1016/j.jhazmat.2023.132723CrossRefGoogle ScholarPubMed
Hansel, C.M., Benner, S.G., & Fendorf, S. (2005). Competing Fe(II)-induced mineralization pathways of ferrihydrite, Environmental Science & Technology, 39, 71477153. https://doi.org/10.1021/es050666zCrossRefGoogle ScholarPubMed
Hu, Y., Xue, Q., Tang, J., Fan, X., & Chen, H. (2019). New insights on Cr(VI) retention by ferrihydrite in the presence of Fe(II). Chemosphere, 222, 511519. https://doi.org/10.1016/j.chemosphere.2019.01.160CrossRefGoogle ScholarPubMed
Huang, B., Yuan, Z., Li, D., Zheng, M., Nie, X., & Liao, Y. 2020. Effects of soil particle size on the adsorption, distribution, and migration behaviors of heavy metal(loid)s in soil: a review. Environmental Science: Processes & Impacts, 22, 15961615. https://doi.org/10.1039/D0EM00189AGoogle Scholar
Iorio, E.D., Circelli, L., Angelico, R., Torrent, J., Tan, W., & Colombo, C. (2022). Environmental implications of interaction between humic substances and iron oxide nanoparticles: a review. Chemosphere, 303, 135172. https://doi.org/10.1016/j.chemosphere.2022.135172CrossRefGoogle ScholarPubMed
Kuila, U., & Prasad, M. (2013). Specific surface area and pore-size distribution in clays and shales. Geophysical Prospecting, 61, 341362. https://doi.org/10.1111/1365-2478.12028CrossRefGoogle Scholar
Laurel, K.T., Ralf, K., & Ruben, K. (2019). Ferrihydrite growth and transformation in the presence of ferrous iron and model organic ligands. Environmental Science & Technology, 53, 1363613647. https://doi.org/10.1021/acs.est.9b03952Google Scholar
Liu, Y., Ding, Y., Sheng, A., Li, X., Chen, J., Arai, Y., & Liu, J. (2023). Fe(II)-catalyzed transformation of ferrihydrite with different degrees of crystallinity. Environmental Science & Technology, 57, 69346943. https://doi.org/10.1021/acs.est.3c00555CrossRefGoogle ScholarPubMed
Mendez, J.C., Tjisse, H., & Gerwin, F.K. (2020). Assessing the reactive surface area of soils and the association of soil organic carbon with natural oxide nanoparticles using ferrihydrite as proxy. Environmental Science & Technology, 54, 11990–2000. https://doi.org/10.1021/acs.est.0c02163CrossRefGoogle ScholarPubMed
Meng, F., Bu, H., Fei, Y., Chen, M., Lei, Q., Liu, D., Hua, J., Wu, F., & Liu, C. (2022). Effects of clay minerals on Fe2+-induced phase transformation of ferrihydrite. Applied Geochemistry, 144, 105401. https://doi.org/10.1016/j.apgeochem.2022.105401CrossRefGoogle Scholar
Ryan, P.C., & Javier, H.F. (2013). Reaction pathways of clay minerals in tropical soils: insights from kaolinite-smectite synthesis experiments. Clays and Clay Minerals, 61, 303318. https://doi.org/10.1346/CCMN.2013.0610410CrossRefGoogle Scholar
Schwertmann, U., & Cornell, R.M. (2008). Iron Oxides in the Laboratory: Preparation and Characterization. John Wiley & Sons.Google Scholar
Sheng, A., Liu, J., Li, X., Qafoku, O., Collins, R.N., Jones, A.M., Pearce, C.I., Wang, C., Ni, J., Lu, A., & Rosso, K.M. (2020). Labile Fe(III) from sorbed Fe(II) oxidation is the key intermediate in Fe(II)-catalyzed ferrihydrite transformation. Geochimica et Cosmochimica Acta, 272, 105120. https://doi.org/10.1016/j.gca.2019.12.028CrossRefGoogle Scholar
Shi, M., Min, X., Ke, Y., Lin, Z., Yang, Z., Wang, S., Peng, N., Yan, X., Luo, S., Wu, J., & Wei, Y. (2021). Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr)oxides. Science of the Total Environment, 752, 141930. https://doi.org/10.1016/j.scitotenv.2020.141930CrossRefGoogle Scholar
Stookey, L.L. (1970). Ferrozine – a new spectrophotometric reagent for iron. Analytical Chemistry, 42, 779781. https://doi.org/10.1021/ac60289a016CrossRefGoogle Scholar
Sun, Z., Zhu, R., Ding, T., Zhang, X., & Li, C. (2022). Induced morphology orientation of alpha-FeOOH by kaolinite for enhancing peroxymonosulfate activation. Journal of Colloid and Interface Science, 626, 494505. https://doi.org/10.1016/j.jcis.2022.06.151CrossRefGoogle ScholarPubMed
Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87, 10511069. https://doi.org/10.1515/pac-2014-1117CrossRefGoogle Scholar
Van, G.N., ThomasArrigo, L.K., Byrne, J.M., Kappler, A., Christl, I., & Kretzschmar, R. (2020). Interactions of ferrous iron with clay mineral surfaces during sorption and subsequent oxidation. Environmental Science: Processes & Impacts, 22, 13551367. https://doi.org/10.1039/d0em00063aGoogle Scholar
Wang, X., Zhu, M., Luuk, K.K., Li, W., Xu, W., Liu, F., Zhang, J., Liu, Q., Feng, X., & Sparks, D.L. (2016). Effects of crystallite size on the structure and magnetism of ferrihydrite. Environmental Science: Nano, 3, 190202. https://doi.org/10.1039/C5EN00191AGoogle Scholar
Wei, S., Liu, F., Feng, X., Tan, W., & Koopal, L.K. (2011). Formation and transformation of iron oxide-kaolinite associations in the presence of iron(II). Soil Science Society of America Journal, 75, 4555. https://doi.org/10.2136/sssaj2010.0175CrossRefGoogle Scholar
Wei, S., & Yang, X. (2010). Surface properties and adsorption characteristics for fluoride of goethite, kaolinite and their association. Environmental Science, 31, 21342142. https://doi.org/10.13227/j.hjkx.2010.09.025Google ScholarPubMed
Yan, L., Chen, Q., Yang, Y., & Zhu, R. (2021). The significant role of montmorillonite on the formation of hematite nanoparticles from ferrihydrite under heat treatment. Applied Clay Science, 202, 10562. https://doi.org/10.1016/j.clay.2020.105962CrossRefGoogle Scholar
Zeng, L., Li, X., Jiang, F., Yin, M., Dang, Z., Zhang, L., Huang, W., & Yi, X. (2023). The effect of kaolinite on ferrihydrite colloid migration in soil: molecular-scale mechanism study. Environmental Science: Nano, 10, 27542766. https://doi.org/10.1039/d3en00333gGoogle Scholar
Zhang, L., Fu, F., Peng, J., & Tang, B. (2023a). The mobility of Cr(VI) on the ferrihydrite-Cr(VI) co-precipitates: the effect of co-existing tartaric acid and Cu(II). Applied Geochemistry, 152, 105646. https://doi.org/10.1016/j.apgeochem.2023.105646CrossRefGoogle Scholar
Zhang, T., Tang, B., & Fu, F. (2023b). Influence of montmorillonite incorporation on ferrihydrite transformation and Cr(VI) behaviors during ferrihydrite-Cr(VI) coprecipitates aging. Science of the Total Environment, 873, 162257. https://doi.org/10.1016/j.scitotenv.2023.162257CrossRefGoogle ScholarPubMed
Zhao, X., Yuan, Z., Wang, S., Zhang, G., Qu, S., Wang, Y., Liu, S., Pan, Y., Lin, J., & Jia, Y. (2022a). The fate of co-existent cadmium and arsenic during Fe(II)-induced transformation of As(V)/Cd(II)-bearing ferrihydrite. Chemosphere, 301, 134665. https://doi.org/10.1016/j.chemosphere.2022.134665CrossRefGoogle Scholar
Zhao, X., Yuan, Z., Wang, S., Pan, Y., Chen, N., Tunc, A., Cheung, K., Alparov, A., Chen, W., Deevsalar, R., Lin, J., & Jia, Y. (2022b). Iron(II)-activated phase transformation of Cd-bearing ferrihydrite: implications for cadmium mobility and fate under anaerobic conditions. Science of the Total Environment, 848, 157719. https://doi.org/10.1016/j.scitotenv.2022.157719CrossRefGoogle ScholarPubMed
Zhou, Z., Latta, D.E., & Scherer, M.M. (2021). Natural organic matter inhibits Ni stabilization during Fe(II)-catalyzed ferrihydrite transformation. Science of the Total Environment, 755, 142612. https://doi.org/10.1016/j.scitotenv.2020.142612CrossRefGoogle ScholarPubMed
Supplementary material: File

Wu et al. supplementary material

Wu et al. supplementary material
Download Wu et al. supplementary material(File)
File 29.4 KB