Hostname: page-component-669899f699-7tmb6 Total loading time: 0 Render date: 2025-05-04T13:16:30.666Z Has data issue: false hasContentIssue false

Spineless cactus (Nopalea cochenillifera (L.)) as an exclusive or partial source of water for goats: histomorphological changes in the digestive, hepatic and renal systems

Published online by Cambridge University Press:  20 November 2024

Tamiris Matias da Costa
Affiliation:
Departamento de Zootecnia, Universidade Federal da Paraiba, Centro de Ciências Agrárias/CCA/Areia, Paraiba, Brasil
Greicy Mitzi Bezerra Moreno
Affiliation:
Departamento de Zootecnia, Universidade Federal de Alagoas, Campus Arapiraca, Arapiraca, Alagoas, Brasil
Neila Lidiany Ribeiro*
Affiliation:
Pós-doc do Programa de pó-graduação de Engenharia Agricola, Universidade Federal de Campina Grande, Campina Grande, Paraiba, Brasil
Oscar Boaventura Neto
Affiliation:
Departamento de Zootecnia, Universidade Federal de Alagoas, Campus Arapiraca, Arapiraca, Alagoas, Brasil
Vitor Visintin Silva de Almeida
Affiliation:
Departamento de Zootecnia, Universidade Federal de Alagoas, Campus Arapiraca, Arapiraca, Alagoas, Brasil
Dorgival Morais de Lima Júnior
Affiliation:
Departamento de Ciências Animal, Universidade Federal Rural do Semiárido, Campus Mossoró, Rio Grande do Norte, Brasil
Edjanio Galdino da Silva
Affiliation:
Departamento de Zootecnia, Universidade Federal da Paraiba, Centro de Ciências Agrárias/CCA/Areia, Paraiba, Brasil
Ricardo Romão Guerra
Affiliation:
Departamento de Zootecnia, Universidade Federal da Paraiba, Centro de Ciências Agrárias/CCA/Areia, Paraiba, Brasil
*
Corresponding author: Neila Lidiany Ribeiro; Email: [email protected]

Abstract

The aim of this study was to evaluate the production performance and the occurrence of histomorphometric changes in the digestive, hepatic and renal systems of goats fed with a diet containing different contents of 25 and 55% spineless cactus (Nopalea cochenillifera (L.)) and with partial or total restriction of drinking water. A total of 35 castrated male goats were used, with an average initial body weight of 19 + 1.4 kg, an average age of 8 months and distributed into five treatments: control (CON): 0.8 Tifton-85 hay and 0.2 concentrate with access to drinking water; 0.25 spineless cactus with access to drinking water (25ADW); 0.25 spineless cactus without access to drinking water (25NDW); 0.55 spineless cactus with access to drinking water (55ADW) and 0.55 spineless cactus without access to drinking water (55NDW). Ruminal and intestinal morphometry, liver glycogen reserve index, duodenal goblet cell index and liver and kidney histopathology were carried out. In the treatment with 0.25 spineless cactus and 0.55 Tifton-85 hay, dry matter intake increased by 26%. The papilla absorption area showed that the 0.55 spineless cactus content provided a larger area (P < 0.05) compared to the 0.25 content and the control. It can be concluded that spineless cactus (N. cochenillifera (L.)) can be used in the diet of goats at a concentration of up to 0.55, associated with Tifton-85, with or without access to drinking water, without causing losses in animal performance or at ruminal, intestinal, hepatic or renal level.

Type
Animal Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Akinmoladun, OF, Fon, FN, Mpendulo, CT and Okoh, O (2020) Performance, heat tolerance response, and blood metabolites of water-restricted Xhosa goats supplemented with vitamin C. Translational Animal Science 4, 11131127. https://doi.org/10.1093/tas/txaa044CrossRefGoogle ScholarPubMed
Barboza, SCR, Oliveira, JS, Souza, MTC, Lima Júnior, DM, Lima, HB and Guerra, RR (2019) Ovines submitted to diets containing cassava foliage hay and spineless cactus forage: histological changes in the digestive and renal systems. Tropical Animal Health and Production 51, 16891697. https://doi.org/10.1007/s11250-019-01863-9CrossRefGoogle Scholar
Berne, RB and Levy, MN (2009) Fisiologia, 6th edn. Rio de Janeiro: Elsevier.Google Scholar
Bispo, SV, Ferreira, MA, Véras, ASC, Batista, AMV, Pessoa, RAS and Bleuel, MP (2007) Palma forrageira em substituição ao feno de capim-elefante: efeito sobre consumo, digestibilidade e características de fermentação ruminal em ovinos. Revista Brasileira de Zootecnia 36, 19021909. https://doi.org/10.1590/S1516-35982007000800026CrossRefGoogle Scholar
Brasil. Ministério da Agricultura (2020) Instrução Normativa n° 3, de 07 de janeiro de 2000. Regulamento técnico de métodos de insensibilização para o abate humanitário de animais de açougue. S. D. A./M. A. A. Diário Oficial da União, Brasília, 24 Jan. 2000, Seção 1, 14–16.Google Scholar
Bueno, R, Albuquerque, R, Murarolli, VDA, Aya, LAH, Raposo, RS and Bordin, RA (2012) Efeito da influência de probiótico sobre a morfologia intestinal de codornas japonesas. Brazilian Journal of Veterinary Research and Animal Science 49, 111115. https://doi.org/10.11606/issn.2318-3659.v49i2p111-115CrossRefGoogle Scholar
Carvalho, PR, Villalobos, EMC, Castilho, PA, Loureiro, JE, Mello, PRS and Silva, LC (2011) Screening to prevent to carential and metabolic disease and HPTNS of equids grazing forage grasses with unbalanced levels of minerals, through the mineral profile and creatinine clearance ratio for Ca and P assessment. Pakistan Journal of Nutrition 10, 519538. https://doi.org/10.3923/pjn.2011.519.538CrossRefGoogle Scholar
Cordova-Torres, AV, Guerra, RR, Araújo Filho, JT, Medeiros, AN, Costa, RG, Ribeiro, NL and Bezerra, LR (2022) Effect of water deprivation and increasing levels of spineless cactus (Nopalea cochenillifera) cladodes in the diet of growing lambs on intake, growth performance and ruminal and intestinal morphometric changes. Live Science 258, 104828. https://doi.org/10.1016/j.livsci.2022.104828CrossRefGoogle Scholar
Costa, RG, Beltrão Filho, EM, Medeiros, AN, Givisiez, PEN, Queiroga, RCRE and Melo, AAS (2009) Effects of increasing levels of cactus pear (Opuntia ficus-indica L. Miller) in the diet of dairy goats and its contribution as a source of water. Small Ruminant Research: The Journal of the International Goat Association 82, 6265. https://doi.org/10.1016/j.smallrumres.2009.01.004CrossRefGoogle Scholar
Dantas Júnior, PR, Oliveira, JS, Ribeiro, NL, Rola, LD, Silva, EG, Oliveira, AC, Almeida, VVS, Lima Júnior, DM and Guerra, RR (2021) Performance and intestinal histology of sheep fed detoxified castor bean meal in sugarcane silage. South African Journal of Animal Science 51, 735744. https://doi.org/10.4314/sajas.v51i6.6CrossRefGoogle Scholar
Fernandes, RD, Ramalho, AMC, Rosa, CC, Souza, CMM and Mello, BJ (2020) Da Escassez ao Excesso de Água: um Recorte do Semiárido no Nordeste e Médio Vale do Itajaí no Sul do Brasil. Revista Brasileira de Geografia Física 13, 12631279. https://doi.org/10.26848/rbgf.v13.3.p1263-1279CrossRefGoogle Scholar
Galvão Júnior, JG, Silva, JBA, Morais, JHG and Lima, RN (2014) Palma forrageira na alimentação de ruminantes: cultivo e utilização. Acta Veterinaria Belgrade 8, 7885.Google Scholar
Garcia, PH, Ribeiro, NL, Oliveira, JS, Lima Júnior, DM, Almeida, VVS, Silva, EG, Costa, TM and Guerra, RR (2022) Red propolis extract in the diet of confined sheep: morphometric alterations of the digestive system. Tropical Animal Health and Production 55, 391. https://doi.org/10.1007/s11250-023-03799-7Google Scholar
Górka, P, Sliwinski, B, Flaga, J, Olszewski, J, Wojciechowski, M, Krupa, K, Godlewski, MM, Zabielski, R and Kowalski, Z (2018) Effect of exogenous butyrate on the gastrointestinal tract of sheep. I. Structure and function of the rumen, omasum, and abomasum. Journal of Animal Science 96, 53115324. https://doi.org/10.1093/jas/sky367CrossRefGoogle ScholarPubMed
Hall, MB (2000) Neutral Detergent-Soluble Carbohydrates Nutritional Relevance and Analysis. Gainesville: University of Florida.Google Scholar
Ishak, K, Baptista, A, Bianchi, L, Callea, F, De Groote, J, Gudat, F, Denk, H, Desmet, V, Korb, G and MacSween, RN (1995) Histological grading and staging of chronic hepatitis. Journal of Hepatology 22, 6966995. https://doi.org/10.1016/0168-8278(95)80226-6CrossRefGoogle ScholarPubMed
Jin, YM, Jiang, C, Zhang, XQ, Shi, LF and Wang, MZ (2018) Effect of dietary Urtica cannabina on the growth performance, apparent digestibility, rumen fermentation and gastrointestinal morphology of growing lambs. Animal Feed Science and Technology 243, 19. https://doi.org/10.1016/j.anifeedsci.2018.06.014CrossRefGoogle Scholar
Jin, C, Su, X, Wang, P, Liang, Z, Lei, X, Bai, H, Liang, G, Li, J, Cao, Y and Yao, J (2023) Effects of rumen degradable starch on growth performance, carcass, rumen fermentation, and ruminal VFA absorption in growing goats. Animal Feed Science and Technology 299, 115618. https://doi.org/10.1016/j.anifeedsci.2023.115618CrossRefGoogle Scholar
Lima, TJ, Costa, RG, Medeiros, GR, Medeiros, AN, Ribeiro, NL, Oliveira, JS, Guerra, RR and Carvalho, FFR (2019) Ruminal and morphometric parameters of the rumen and intestines of sheep fed with increasing levels of spineless cactus (Nopalea cochenillifera Salm-Dyck). Tropical Animal Health and Production 51, 363368. https://doi.org/10.1007/s11250-018-1697-1CrossRefGoogle ScholarPubMed
Mcbride, BW and Kelly, JM (1990) Energy cost of absorption and metabolism in the ruminant gastrointestinal tract and liver: a review. Journal of Animal Science 68, 29973010. https://doi.org/10.2527/1990.6892997xCrossRefGoogle ScholarPubMed
Moura, MSC, Guim, A, Batista, AMV, Maciel, MV, Cardoso, DB, Lima Júnior, DM and Carvalho, FFR (2020) The inclusion of spineless cactus in the diet of lambs increases fattening of the carcass. Meat Science 160, 107975. https://doi.org/10.1016/j.meatsci.2019.107975CrossRefGoogle ScholarPubMed
National Research Council-NRC (2007) Nutrients Requirements of Small Ruminants. Washington, D.C.: National Academy Press.Google Scholar
Nobre, IS, Araújo, GGL, Santos, EM, Carvalho, GGP, Albuquerque, IRR, Oliveira, JS, Ribeiro, OL, Turco, SHN, Gois, GC, Silva, TGF, Perazzo, AF, Zanine, AM, Ferreira, DJ, Santos, FNS and Campos, FS (2023) Cactus pear silage to mitigate the effects of an intermittent water supply for feedlot lambs: intake, digestibility, water balance and growth performance. Ruminants 3, 121132. https://doi.org/10.3390/ruminants3020011CrossRefGoogle Scholar
Pluske, JR, Hampson, DJ and Williams, IH (1997) Factors influencing the structure and function of the small intestine in the weaned pig: a review. Livestock Production Science 51, 215236.CrossRefGoogle Scholar
Pordeus Neto, J, Soares, PC, Batista, AMV, Andrade, SFJ, Andrade, RPX, Lucena, RB and Guim, A (2016) Balanço hídrico e excreção renal de metabólitos em ovinos alimentados com palma forrageira (Nopalea cochenillifera Salm Dyck). Pesquisa Veterinaria Brasileira 36, 322328. https://doi.org/10.1590/S0100-736X2016000400012CrossRefGoogle Scholar
Porto Filho, JM, Costa, RG, Ribeiro, NL, Guerra, RR, Oliveira, JS and Beltrão, GR (2020) Study of morphometric and ruminal parameters in santa inês sheep fed spineless cactus (Opuntia ficus-indica, Mill). Arquivo Brasileiro de Medicina Veterinaria e Zootecnia 72, 20452052. https://doi.org/10.1590/1678-4162-10504CrossRefGoogle Scholar
Sas Institute-SAS (2001) Uuser's Guide: Statistics. Cary: SAS Institute.Google Scholar
Silva, TGF, Santos, GCL, Duarte, AMC, Turco, SHN, Cruz Neto, JF, Jardim, AMRF and dos Santos, TS (2019) Black globe temperature from meteorological data and a bioclimatic analysis of the Brazilian Northeast for Saanen goats. Journal of Thermal Biology 85, 102408.CrossRefGoogle Scholar
Silva, KB, Oliveira, JS, Santos, EM, Cartaxo, FQ, Guerra, RR, Souza, AFN, Muniz, ACS and Cruz, GFL (2020) Ruminal and histological characteristics and nitrogen balance in lamb fed diets containing cactus as the only roughage. Tropical Animal Health and Production 52, 637645. https://doi.org/10.1007/s11250-019-02051-5CrossRefGoogle Scholar
Silva, TGP, Munhame, JA, Lopes, LA, Souza, FAL, Guim, A, Carvalho, FFR, Soares, PC, Barros, MEG, Arandas, JKG and Batista, AMV (2021) Liver status of goats fed with cactus cladodes genotypes resistant to Dactylopius opuntiae. Small Ruminant Research: The Journal of the International Goat Association 198, 106359. https://doi.org/10.1016/j.smallrumres.2021.106359CrossRefGoogle Scholar
Silva, TS, Araújo, GGL, Santos, EM, Oliveira, JS, Godoi, PFA, Gois, GC, Perazzo, AF, Ribeiro, OL, Turco, SHN and Campos, FS (2023) Intake, digestibility, nitrogen balance and performance in lamb fed spineless cactus silage associated with forages adapted to the semiarid environment Spineless cactus silages in diets for lambs. Live Science 268, 105168. https://doi.org/10.1016/j.livsci.2023.105168CrossRefGoogle Scholar
Tegegne, F, Kijora, C and Peters, KJ (2007) Study on the optimal level of cactus pear (Opuntia ficus-indica) supplementation to sheep and its contribution as source of water. Small Ruminant Research 72, 157164.CrossRefGoogle Scholar
Usman, UA, de Moraes, ACA, da Silva, TGP, Batista, ÂMV, Soares, PC, de Araújo, CASC, de Carvalho, FFR and da Silva Júnior, VA (2022) Kidney changes in lambs fed cactus pear varieties resistant to Dactylopius opuntiae as the only roughage. Tropical Animal Health and Production 54, 311.CrossRefGoogle Scholar