Hostname: page-component-669899f699-ggqkh Total loading time: 0 Render date: 2025-05-06T06:35:28.604Z Has data issue: false hasContentIssue false

Novel Pharyngeal Oxygen Delivery Device Provides Superior Oxygenation during Simulated Cardiopulmonary Resuscitation

Published online by Cambridge University Press:  12 December 2024

Jeramie B. Hanson
Affiliation:
Baylor College of Medicine, Temple, Texas USA Baylor Scott & White Medical Center – Temple Department of Anesthesiology, Temple, Texas USA
John R. Williams
Affiliation:
Baylor Scott & White Medical Center – Temple Department of Anesthesiology, Temple, Texas USA Texas A&M School of Medicine, Temple, Texas USA
Emily H. Garmon*
Affiliation:
Baylor College of Medicine, Temple, Texas USA Baylor Scott & White Medical Center – Temple Department of Anesthesiology, Temple, Texas USA
Phillip M. Morris
Affiliation:
Baylor College of Medicine, Temple, Texas USA Baylor Scott & White Medical Center – Temple Department of Anesthesiology, Temple, Texas USA
Russell K. McAllister
Affiliation:
Baylor College of Medicine, Temple, Texas USA Baylor Scott & White Medical Center – Temple Department of Anesthesiology, Temple, Texas USA
William C. Culp Jr.
Affiliation:
Baylor College of Medicine, Temple, Texas USA Baylor Scott & White Medical Center – Temple Department of Anesthesiology, Temple, Texas USA
*
Correspondence: Emily H. Garmon, MD Associate Professor – Baylor College of Medicine Baylor Scott & White Medical Center – Temple Department of Anesthesiology 2401 South 31st Street Temple, Texas 76508 USA E-mail: [email protected]

Abstract

Introduction:

Passive oxygenation with non-rebreather face mask (NRFM) has been used during cardiac arrest as an alternative to positive pressure ventilation (PPV) with bag-valve-mask (BVM) to minimize chest compression disruptions. A dual-channel pharyngeal oxygen delivery device (PODD) was created to open obstructed upper airways and provide oxygen at the glottic opening. It was hypothesized for this study that the PODD can deliver oxygen as efficiently as BVM or NRFM and oropharyngeal airway (OPA) in a cardiopulmonary resuscitation (CPR) manikin model.

Methods:

Oxygen concentration was measured in test lungs within a resuscitation manikin. These lungs were modified to mimic physiologic volumes, expansion, collapse, and recoil. Automated compressions were administered. Five trials were performed for each of five arms: (1) CPR with 30:2 compression-to-ventilation ratio using BVM with 15 liters per minute (LPM) oxygen; continuous compressions with passive oxygenation using (2) NRFM and OPA with 15 LPM oxygen, (3) PODD with 10 LPM oxygen, (4) PODD with 15 LPM oxygen; and (5) control arm with compressions only.

Results:

Mean peak oxygen concentrations were: (1) 30:2 CPR with BVM 49.3% (SD = 2.6%); (2) NRFM 47.7% (SD = 0.2%); (3) PODD with 10 LPM oxygen 52.3% (SD = 0.4%); (4) PODD with 15 LPM oxygen 62.7% (SD = 0.3%); and (5) control 21% (SD = 0%). Oxygen concentrations rose rapidly and remained steady with passive oxygenation, unlike 30:2 CPR with BVM, which rose after each ventilation and decreased until the next ventilation cycle (sawtooth pattern, mean concentration 40% [SD = 3%]).

Conclusions:

Continuous compressions and passive oxygenation with the PODD resulted in higher lung oxygen concentrations than NRFM and BVM while minimizing CPR interruptions in a manikin model.

Type
Research Report
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of World Association for Disaster and Emergency Medicine

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Editor’s Note: This manuscript was peer-reviewed, revised, and accepted under the Emeritus Editor-in-Chief (EIC) of the journal, Dr. Sam Stratton. The current EIC, Dr. Jeffrey Franc, acknowledges Dr. Stratton’s contributions in relation to the acceptance and publication of this article.

References

American Heart Association. CPR & First Aid Emergency Cardiovascular Care. CPR Facts & Stats. https://cpr.heart.org/en/resources/cpr-facts-and-stats. Accessed December 4, 2023.Google Scholar
Ewy, GA. Cardio cerebral resuscitation: the new cardiopulmonary resuscitation. Circulation. 2005;111(16):21342142.CrossRefGoogle Scholar
Cunningham, LM, Mattu, A, O’Connor, RE, Brady, WJ. Cardiopulmonary resuscitation for cardiac arrest: the importance of uninterrupted chest compressions in cardiac arrest resuscitation. Am J Emerg Med. 2012;30(8):16301638.CrossRefGoogle ScholarPubMed
Aufderheide, TP, Sigurdsson, G, Pirrallo, RG, et al. Hyperventilation-induced hypotension during cardiopulmonary resuscitation. Circulation. 2004;109(16):19601965.CrossRefGoogle ScholarPubMed
Bobrow, BJ, Ewy, GA, Clark, L, et al. Passive oxygen insufflation is superior to bag-valve-mask ventilation for witnessed ventricular fibrillation out-of-hospital cardiac arrest. Ann Emerg Med. 2009;54(5):656662.e1.CrossRefGoogle ScholarPubMed
Committee, ECC, Subcommittees, and Task Forces of the American Heart Association. 2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2005;112(24 Suppl):IV1–IV203.Google Scholar
Sayre, MR, Berg, RA, Cave, DM, et al. Hands-only (compression-only) cardiopulmonary resuscitation: a call to action for bystander response to adults who experience out-of-hospital sudden cardiac arrest: a science advisory for the public from the American Heart Association Emergency Cardiovascular Care Committee. Circulation. 2008;117(16):21622167.CrossRefGoogle Scholar
Berg, RA, Hemphill, R, Abella, BS, et al. Part 5: Adult Basic Life Support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122(18 Suppl 3):S685S705.Google ScholarPubMed
Saïssy, JM, Boussignac, G, Cheptel, E, et al. Efficacy of continuous insufflation of oxygen combined with active cardiac compression-decompression during out-of-hospital cardiorespiratory arrest. Anesthesiology. 2000;92(6):15231530.CrossRefGoogle ScholarPubMed
Bobrow, BJ, Spaite, DW, Berg, RA, et al. Chest compression-only CPR by lay rescuers and survival from out-of-hospital cardiac arrest. JAMA. 2010;304(13):14471454.CrossRefGoogle ScholarPubMed
Steen, S, Liao, Q, Pierre, L, Paskevicius, A, Sjöberg, T. Continuous intratracheal insufflation of oxygen improves the efficacy of mechanical chest compression-active decompression CPR. Resuscitation. 2004;62(2):219227.CrossRefGoogle ScholarPubMed
Toner, AJ, Douglas, SG, Bailey, MA, et al. Effect of apneic oxygenation on tracheal oxygen levels, tracheal pressure, and carbon dioxide accumulation: a randomized, controlled trial of buccal oxygen administration. Anesth Analg. 2019;128(6):11541159.CrossRefGoogle ScholarPubMed
Hanson, JB, Williams, JR, Garmon, EH, et al. Pharyngeal oxygen delivery device sustains manikin lung oxygenation longer than high-flow nasal cannula. Baylor University Medical Center Proceedings. Published online November 14, 2023.CrossRefGoogle Scholar
Berg, RA, Sanders, AB, Kern, KB, et al. Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest. Circulation. 2001;104(20):24652470.CrossRefGoogle ScholarPubMed
Brouwer, TF, Walker, RG, Chapman, FW, Koster, RW. Association between chest compression interruptions and clinical outcomes of ventricular fibrillation out-of-hospital cardiac arrest. Circulation. 2015;132(11):10301037.CrossRefGoogle ScholarPubMed
Wang, HE, Simeone, SJ, Weaver, MD, Callaway, CW. Interruptions in cardiopulmonary resuscitation from paramedic endotracheal intubation. Ann Emerg Med. 2009;54(5):645652.e1.CrossRefGoogle ScholarPubMed
Idris, AH, Aramendi Ecenarro, E, Leroux, B, et al. Bag-valve-mask ventilation and survival from out-of-hospital cardiac arrest: a multicenter study. Circulation. 2023;148(23):18471856.CrossRefGoogle ScholarPubMed
Valenzuela, TD, Kern, KB, Clark, LL, et al. Interruptions of chest compressions during emergency medical systems resuscitation. Circulation. 2005;112(9):12591265.CrossRefGoogle Scholar
Vanwulpen, M, Wolfskeil, M, Duchatelet, C, Hachimi-Idrissi, S. Do manual chest compressions provide substantial ventilation during prehospital cardiopulmonary resuscitation? Am J Emerg Med. 2021;39:129131.CrossRefGoogle ScholarPubMed
Kilgannon, JH, Jones, AE, Shapiro, NI, et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010;303(21):21652171.CrossRefGoogle ScholarPubMed
Kilgannon, JH, Jones, AE, Parrillo, JE, et al. Relationship between supranormal oxygen tension and outcome after resuscitation from cardiac arrest. Circulation. 2011;123(23):27172722.CrossRefGoogle ScholarPubMed