No CrossRef data available.
Article contents
Kato’s main conjecture for potentially ordinary primes
Published online by Cambridge University Press: 26 January 2024
Abstract
In this paper, we prove Kato’s main conjecture for $CM$ modular forms for primes of potentially ordinary reduction under certain hypotheses on the modular form.
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2024. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust
References
Amice, Y. and Velu, J., Distributions p-adiques associées aux séries de Hecke, Journées arithmétiques de Bordeaux, Astérisque 24–25 (1975), 119–131. Société Mathématique de France.Google Scholar
Bloch, S. and Kato, K., L-functions and Tamagawa numbers for motives, in The Grothendieck Festschrift, Progress in Mathematics (Cartier, P., Illusise, L., Katz, N. M., Laumon, G., Manin, Y. I. and Ribet, K. A., Editos) (Springer, New York, 2007).Google Scholar
Delbourgo, D., Iwasawa theory for elliptic curves at unstable primes, Compos. Math. 113 (1998), 123–153.CrossRefGoogle Scholar
Delbourgo, D., On the p-Adic Birch, Swinnerton-Dyer Conjecture for non-semistable reduction, J. Number Theory 95 (2002), 38–71.CrossRefGoogle Scholar
Foquet, O. and Wan, X., The Iwasawa main conjecture for universal families of modular motives, Preprint arXiv: 2107.13726 (2021).Google Scholar
Greenberg, R., On the structure of certain Galois Groups, Invent. Math. 47 (1978), 85–99.CrossRefGoogle Scholar
Kato, K., p-adic Hodge theory and values of Zeta-functions, Cohomologies p-adiques et applications arithmétiques. III, Astérisque 295 (2004), 117–290.Google Scholar
Lei, A., Iwasawa Theory for modular forms at supersingular primes, Compos. Math. 147(3) (2011), 803–838.CrossRefGoogle Scholar
Ribet, K. A., Galois representations attached to eigenforms with nebentypus, in Modular functions in one variable V, Lecture Notes in Mathematics (Serre, J.-P. and Zagier, D. B., Editors) (Springer, Berlin, 1977).Google Scholar
Rubin, K., Local units, elliptic units, Heegner points and elliptic curves, Invent. Math. 88(2) (1987), 405–422.CrossRefGoogle Scholar
Rubin, K., The main conjectures of Iwasawa Theory for imaginary quadratic fields, Invent. Math. 103 (1991), 25–68.CrossRefGoogle Scholar
Rubin, K., Euler systems, Annals of Mathematics Studies, vol. 147 (Princeton University Press, Princeton, NJ, 2000).CrossRefGoogle Scholar
Rubin, K. and Pollack, R., The main conjecture for CM elliptic curves at supersingular primes, Ann. Math. 159 (2004), 447–464.Google Scholar
Vishik, M. M., Non-archimedian measures connected with Dirichlet series, Math. USSR Sbornik 28 (1976), 216–228.CrossRefGoogle Scholar