Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T01:54:59.811Z Has data issue: false hasContentIssue false

Sex distribution in arrested precompacted human embryos

Published online by Cambridge University Press:  26 September 2008

Santiago Munné*
Affiliation:
Center for Reproductive Medicine and Infertility, New York Hospital-Cornell University Center, New York, Division of Molecular Cytometry, University of California, San Francisco, and Department of Life Sciences, Lawrence Berkeley Laboratory, Berkeley, California, USA.
Ya Xu Tang
Affiliation:
Center for Reproductive Medicine and Infertility, New York Hospital-Cornell University Center, New York, Division of Molecular Cytometry, University of California, San Francisco, and Department of Life Sciences, Lawrence Berkeley Laboratory, Berkeley, California, USA.
Heinz-Ulrich G. Weier
Affiliation:
Center for Reproductive Medicine and Infertility, New York Hospital-Cornell University Center, New York, Division of Molecular Cytometry, University of California, San Francisco, and Department of Life Sciences, Lawrence Berkeley Laboratory, Berkeley, California, USA.
Jonathan Stein
Affiliation:
Center for Reproductive Medicine and Infertility, New York Hospital-Cornell University Center, New York, Division of Molecular Cytometry, University of California, San Francisco, and Department of Life Sciences, Lawrence Berkeley Laboratory, Berkeley, California, USA.
Michelle Finkelstein
Affiliation:
Center for Reproductive Medicine and Infertility, New York Hospital-Cornell University Center, New York, Division of Molecular Cytometry, University of California, San Francisco, and Department of Life Sciences, Lawrence Berkeley Laboratory, Berkeley, California, USA.
Jamie Grifo
Affiliation:
Center for Reproductive Medicine and Infertility, New York Hospital-Cornell University Center, New York, Division of Molecular Cytometry, University of California, San Francisco, and Department of Life Sciences, Lawrence Berkeley Laboratory, Berkeley, California, USA.
Jacques Cohen
Affiliation:
Center for Reproductive Medicine and Infertility, New York Hospital-Cornell University Center, New York, Division of Molecular Cytometry, University of California, San Francisco, and Department of Life Sciences, Lawrence Berkeley Laboratory, Berkeley, California, USA.
*
S. Munné, Gamete and Embryo Research Laboratory, Cornell University Medical College, PO Box 30, 1300 York Avenue, New York, NY 10021, USA.

Extract

Evidence of sexual dimorphism before fetal gonadal differentiation in mammals has been accumulating, suggesting that male embryos develop faster than female ones. The current investigation was performed to evaluate whether the development rate of precompacted human embryos is controlled by sex chromosomes. Sex was determined by polymerase chain reaction and fluorescence in situ hybridisation in 172 arrested embryos derived from in vitro fertilisation. The sex ratio (1.02:0.98) did not differ significantly from 1:1. Although more males appeared to have greater fragmentation, the difference between the sex ratios of highly fragmented and normal embryos (1.08:0.92) was not significant. Arrested female embryos had a tendency to exhibit more than five nuclei and less than 10% fragmentation, but the trend was not statistically significant. The current results suggest that the first developmental block in human embryos occurs prior to and shortly after genomic activation and is not determined by the presence of the Y chromosome.

Type
Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angell, R.R., Hiller, S.G., West, J.D., Glasier, A.F., Rodger, M.W. & Baird, D.T. (1988). Chromosome studies in human in vitro fertilization, J. Reprod. Fert. 36 (Suppl.), 7381.Google Scholar
Artley, J.K., Braude, P.R. & Johnson, M.H. (1992). Gene activity and cleavage arrest in human pre-embryos. Hum. Reprod. 7, 1014–21.CrossRefGoogle ScholarPubMed
Avery, B., Madison, V. & Greve, T. (1991). Sex and development in bovine in vitro fertilized embryos. Theriogenology 35, 953–63.CrossRefGoogle ScholarPubMed
Braude, P., Bolton, V. & Moore, S. (1988). Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 333, 459–61.CrossRefGoogle Scholar
Bui, T.H., Iselius, L. & Lindsten, J. (1984). European collaborative study on prenatal diagnosis: mosaicism, pseudo-mosaicism and single abnormal cells in amniotic fluid cell cultures. Prenatal Diagn. (Special issue) 41, 145–62.CrossRefGoogle Scholar
Burgoyne, P.S., Holland, K. & Stephens, R. (1991). Incidence of numerical chromosome abnormalities in human pregnancy estimated from induced and spontaneous abortion data. Hum. Reprod. 6, 555–65.CrossRefGoogle ScholarPubMed
Cohen, J., DeVane, G., Elsner, C.W., Kort, H.I., Massey, J.B. & Norbury, S. (1988). Cryopreserved zygotes and embryos and endocrinological factors in the replacement cycle. Fertil. Steril. 50, 61–7.CrossRefGoogle ScholarPubMed
Cohen, J., Alikani, M., Trowbridge, J. & Rosenwaks, Z. (1992). Implantation enhancement by selective assisted hatching using zona drilling of embryos with poor prognosis. Hum. Reprod. 7, 685–91.CrossRefGoogle ScholarPubMed
Creasy, M.R., Crolla, J.A. & Alberman, E.D. (1976). A cytogenetic study of human spontaneous abortions using banding techniques. Hum. Genet. 31, 177–96.CrossRefGoogle ScholarPubMed
Elben, B., Borgmann, S., Schubbe, I. & Hansmann, I. (1987). A cytogenetic study directly from chorionic villi of 140 spontaneous abortions. Hum. Genet. 77, 137–41.Google Scholar
Ferguson Smith, M.A. & Yates, J.R.W. (1984). Maternal age specific rates for chromosome aberrations and factors influencing them: report of a collaborative study on 52 965 amniocenteses. Prenatal Diagn. (Special issue) 45, 5.CrossRefGoogle Scholar
Gordon, J.W. & Talansky, B.E. (1986). Assisted fertilization by zona drilling: a mouse model for correction of oligospermia. J. Exp. Zool. 239, 347–54.CrossRefGoogle Scholar
Griffin, D.K., Wilton, L.J., Handyside, A.H., Winston, R.M.L. & Delhanty, J.D.A. (1992). Dual fluorescent in situ hybridization for simultaneous detection of X and Y chromosome-specific probes for the sexing of human preimplantation embryonic nuclei. Hum. Genet. 89, 1822.CrossRefGoogle ScholarPubMed
Grifo, J.A. (1992). Preconception and preimplantation genetic diagnosis: polar body, blastomere, and trophectoderm biopsy. Cohen, J., Malter, H.E., Talansky, B.E., Grifo, J. (eds.). In: Micromanipulation of Gametes and Embryos, ed. J. Cohen et al., pp. 223–49. Raven Press, New York.Google Scholar
Grifo, J.A., Tang, Y.X., Kogelman, L.Pratten, M.K., Sanyal, M.K. & Fenton, W. (1990). Characterization of a new human Y-chromosome specific primer pair for polymerase chain reaction. J In Vitro Fertil. Embryo Transplant 7, 192 (abstract 17).Google Scholar
Grifo, J.A., Tang, Y.X., Cohen, J., Gilbert, F., Sanyal, M.K. & Rosenwaks, Z. (1992). Ongoing pregnancy in a hemophilia carrier by embryo biopsy and simultaneous amplification of X and Y chromosome specific DNA from single blasstomers, JAMA 6, 727–9.CrossRefGoogle Scholar
Guernieri, S., Bettio, D., Simoni, G., Brambati, B., Lanzani, A. & Fraccaro, M. (1987). Prevalence and distribution of chromosome abnormalities in a sample of first trimester internal abortions. Hum. Reprod. 2, 735–9.CrossRefGoogle Scholar
Hafez, E.S.E. (1962). Differential cleavage rate in 2-day litter mate rabbit embryos. Proc. Soc. Exp. Biol. 110, 142–5.CrossRefGoogle ScholarPubMed
Handyside, A.H., Kontogianni, E.H.Hardy, K. & Winston, R.M.L. (1990). Pregnancies from biopsed human pre-implantation embryos sexed by Y-specific DNA amplification. Nature 344, 768–70.CrossRefGoogle Scholar
Hassold, T., Cohen, N., Funkhouser, J., Jooss, T., Manuel, B., Matsuura, J. et al. (1980). A cytogenetic study of 1000 spontaneous abortuses. Ann. Hum. Genet. Lond. 44, 151–78.CrossRefGoogle Scholar
Hsu, L.Y.F. (1986). Prenatal diagnosis of chromosome abnormalities. In: Genetic Disorders and the Fetus, 2nd edn, ed. Milunsky, A., pp. 115–83. Plenum Press, New York.CrossRefGoogle Scholar
Hsu, L.Y.F. & Perlis, T.E. (1984). United States survey on chromosome mosaicism and pseudomosaicism in prenatal diagnosis. Prenatal Diagn. (Special issue) 4, 97130.CrossRefGoogle ScholarPubMed
Johnson, G.D. & Nogueira Araujo, G.M. de (1981). A simple method of reducing the fading of immunofluorescence during microscopy. J. Immunol. Methods 43, 349–51.CrossRefGoogle ScholarPubMed
Kajii, T., Ferrier, A., Niikawa, N., Takahara, H., Ohama, K. & Sugandhi, A. (1980). Anatomic and chromosomal anomalies in 639 spontaneous abortuses. Hum. Genet. 55, 8798.CrossRefGoogle ScholarPubMed
Moore, D.H. & Gledhill, B.L. (1988). How large should my study be so that I can detect an altered sex ratio? Fertil. Steril. 50, 21–5.CrossRefGoogle ScholarPubMed
Munné, S. & Cohen, J. (1993). Unsuitability of multinucleated human blastomeres for preimplantation genetic diagnosis. Hum. Reprod. (in press).CrossRefGoogle ScholarPubMed
Munné, S., Weier, H.U.G., Stein, J., Griffo, J. & Cohen, J. (1993). A fast and efficient method for simultaneous X and Y in situ hybridization of human blastomeres. J. Assist. Reprod. Genet 10, 8290.CrossRefGoogle ScholarPubMed
Ohno, M., Maeda, T. & Matsunobu, A. (1991). A cytogenetic study of spontaneous abortions with direct analysis of chorionic villi. Obstet. Gynecol. 77, 394–8.Google ScholarPubMed
Papadopoulus, G., Templeton, A.A., Fisk, N. & Randall, J. (1988). The frequency of chromosome abnormalities in human preimplantation embryos after in vitro fertilization. Hum. Reprod. 4, 91–8.CrossRefGoogle Scholar
Pedersen, J.F. (1980). Ultrasound evidence of sexual difference in fetal size in first trimester. BMJ 281, 1253.CrossRefGoogle ScholarPubMed
Pinkel, D., Gray, J.W., Trask, B., van den Engh, G., Fuscoe, J. & van Dekken, H. (1986). Cytogenetic analysis by in situ hybridization with fluorescently labeled nucleic acid probes. In: Cold Spring Harbor Symposia on Quantitative Biology, vol. 51, pp. 151–7. Cold Spring Harbor Laboratory, New York.Google Scholar
Plachot, M., De Grouchy, J., Junca, A.M., Mandelbaum, J., Turleau, C., Coullin, P., Cohen, J. & Salat, Baroux J. (1987a). From oocyte to embryo: a model, deduced from in vitro fertilization, for natural selection against chromosome abnormalities. Ann. Genet. 30, 2232.Google Scholar
Plachot, M., Junca, A.M., Mandelbaum, J., De Grouchy, J., Salat-Baroux, J. & Cohen, J. (1987 b). Chromosome investigations in early life. II. Human preimplantation embryos. Hum. Reprod. 2, 2935.CrossRefGoogle ScholarPubMed
Plachot, M., Veiga, A., Montague, J., De Grouchy, J., Calderon, G., Lepretre, J.S. et al. (1988). Are clinical and biological IVF parameters correlated with chromosomal disorders in early life? A multicentric study. Hum. Reprod. 5, 627–35.CrossRefGoogle Scholar
Tarkowski, A.K. (1966). An air drying method for chromosome preparations from mouse eggs. Cytogenetics 5, 394400.CrossRefGoogle Scholar
Tsunoda, Y., Tokunaga, T. & Sugie, T. (1985). Altered sex ratio of live young after transfer of fast and slow developing mouse embryos. Gamete Res. 12, 301–4.CrossRefGoogle Scholar
Warburton, D., Stein, Z.Kline, J. & Susser, M. (1980). Chromosome abnormalities in spontaneous abortion: data from the New York city study. In: Human Embryonic and Fetal Death, ed. Porter, L.H., & Hook, E.B., pp. 261–87. Academic Press, New York.Google Scholar
Waye, J.S., Willard, H.F. (1985). Chromosome specific alpha satellite DNA: nucleotide sequence of the 2.0 kilobase pair repeat from the human X chromosome. Nucleic Acids Res. 13, 2731–43.CrossRefGoogle Scholar
Worton, R.G. & Stern, R. (1984). A Canadian collaborative study of mosaicism in amniotic fluid cell cultures. Prenatal Diagn. 4, 131–44.CrossRefGoogle ScholarPubMed
Wright, G., Wiker, S., Elsner, C., Kort, H., Massey, J., Mitchell, D., Toledo, A. & Cohen, J. (1990). Observations on the morphology of human zygotes, pronuclei and nucleoli and implications for cryopreservation. Hum. Reprod. 5, 109–15.CrossRefGoogle ScholarPubMed
Wyrobek, A.J.Robbins, W.A., Weier, H.U. & Pinkel, D., (1992). Detection of human sperm carrying sex-chromosomal and autosomal aneuploidies using one-, two-, and three-color fluorescence in situ hybridizations. Am. J. Hum. Genet. 51 (Suppl.), A23 (abstract 82).Google Scholar
Xu, K.P., Yadav, B.R., King, W.A & Betteridge, K.J. (1992). Sex-related differences in developmental rates of bovine embryos produced and cultured in vitro. Mol. Reprod. Dev. 31, 249–52.CrossRefGoogle ScholarPubMed
Zhou, X., Tong, H., Wong, S., Shen, Q., Fu, X. & Ciu, Y. (1989). Chromosome abnormalities in early pregnancy analyzed by direct chromosome preparations of chorionic villi. Hum. Genet. 83, 277–9.CrossRefGoogle ScholarPubMed