Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T21:09:28.791Z Has data issue: false hasContentIssue false

Selection of Rattus norvegicus oocytes for in vitro maturation by brilliant cresyl blue staining

Published online by Cambridge University Press:  27 July 2011

Diego Duarte Alcoba
Affiliation:
Laboratório de Biologia Celular–Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA)–Porto Alegre, Brazil.
Bianca Letícia da Rosa Braga
Affiliation:
Laboratório de Biologia Celular–Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA)–Porto Alegre, Brazil.
Nathallie Louise Sandi-Monroy
Affiliation:
Laboratório de Biologia Celular–Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA)–Porto Alegre, Brazil.
Letícia Auler Proença
Affiliation:
Laboratório de Biologia Celular–Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA)–Porto Alegre, Brazil.
Rui Fernando Felix Lopes
Affiliation:
Laboratório de Biotecnologia Animal Aplicada–Universidade Federal de Rio Grande do Sul (UFRGS)–Porto Alegre, Brazil.
Alexandre Tavares Duarte de Oliveira*
Affiliation:
Universidade Federal de Ciências da Saúde de Porto Alegre – UFCSPA, Rua Sarmento Leite, 245 – sala 06, Porto Alegre – Rio Grande do Sul, 90050-170, Brazil.
*
All correspondence to: Alexandre Tavares Duarte de Oliveira. Universidade Federal de Ciências da Saúde de Porto Alegre – UFCSPA, Rua Sarmento Leite, 245 – sala 06, Porto Alegre – Rio Grande do Sul, 90050-170, Brazil. Tel: +55 51 33 03 8823. Fax: +55 51 33 03 8810. e-mail: [email protected]

Summary

The objective of this work was to evaluate the rate of meiosis resumption and nuclear maturation of rat (Rattus norvegicus) oocytes selected for in vitro maturation (IVM) after staining of cumulus–oocyte complexes (COCs) with blue cresyl brilliant (BCB) using different protocols: exposure for 30, 60 or 90 min at 26 μM BCB (Experiment 1), and exposure for 60 min at 13, 20 or 26 μM BCB (Experiment 2). In Experiment 1, the selection of oocytes exposed to BCB for 60 min was found to be the most suitable, as meiosis resumption rates in the BCB+ group (n = 35/61; 57.37%) were the closest to the observed in the control (not exposed) group (n = 70/90; 77.77%) and statistically higher than the values observed for the BCB group (n = 3/41; 7.32%). Additionally, the more effective evaluation of diagnostic tests (sensitivity and negative predictive value 100%) was observed in COCs exposed for 60 min. In Experiment 2, the 13 μM BCB+ group presented rates of meiosis resumption (n = 57/72; 72.22%) similar to the control group (n = 87/105; 82.86%) and higher than other concentration groups. However, this results of the analysis between BCB oocytes was also higher in the 13 μM BCB group (n = 28/91; 30.78%) when compared with BCB COCs exposed to 20 μM (n = 3/62; 4.84%) or 26 μM (n = 3/61; 4.92%) BCB. The nuclear maturation rate in the 13 μM BCB group was similar between BCB+ or BCB oocytes. The 20 μM BCB group had a lower rate of nuclear maturation of BCB oocytes than other groups. Thus, our best results in the selection of Rattus norvegicus oocytes by staining with BCB were obtained using the concentration of 13 μM and 20 μM, and an incubation period of 60 min.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adona, P.R., Pires, P.R., Quetglas, M.D., Schwarz, K.R. & Leal, C.L. (2008). Prematuration of bovine oocytes with butyrolactone I: effects on meiosis progression, cytoskeleton, organelle distribution and embryo development. Anim. Reprod. Sci. 108, 4965.CrossRefGoogle ScholarPubMed
Alm, H., Torner, H., Lohrke, B., Viergutz, T., Ghoneim, I.M. & Kanitz, W. (2005). Bovine blastocyst development rate in vitro is influenced by selection of oocytes by brillant cresyl blue staining before IVM as indicator for glucose-6-phosphate dehydrogenase activity. Theriogenology 63, 2194–205.CrossRefGoogle ScholarPubMed
Bhojwani, S., Alm, H., Torner, H., Kanitz, W. & Poehland, R. (2007). Selection of developmentally competent oocytes through brilliant cresyl blue stain enhances blastocyst development rate after bovine nuclear transfer. Theriogenology 67, 341–5.CrossRefGoogle ScholarPubMed
Dekel, N. (1995). Molecular control of meiosis. Trends Endocrinol. Metab. 6, 165–9.CrossRefGoogle ScholarPubMed
Dekel, N. & Beers, W.H. (1978). Rat oocyte maturation in vitro: relief of cyclic AMP inhibition by gonadotropins. Proc. Natl. Acad. Sci. USA 75, 4369–73.CrossRefGoogle ScholarPubMed
Goovaerts, I.G., Leroy, J.L., Jorssen, E.P. & Bols, P.E. (2010). Noninvasive bovine oocyte quality assessment: possibilities of a single oocyte culture. Theriogenology 74, 1509–20.CrossRefGoogle ScholarPubMed
Grøndahl, C. (2008). Oocyte maturation. Basic and clinical aspects of in vitro maturation (IVM) with special emphasis of the role of FF-MAS. Dan. Med. Bull. 55, 116.Google ScholarPubMed
Hyttel, P., Fair, T., Callesen, H. & Greve, T. (1997). Oocyte growth, capacitation and final maturation in cattle. Theriogenology 47, 2332.CrossRefGoogle Scholar
Jiang, J.Y., Xiong, H., Cao, M., Xia, X., Sirard, M.A. & Tsang, B.K. (2010). Mural granulosa cell gene expression associated with oocyte developmental competence (abstract). J. Ovarian Res. 3, 6.CrossRefGoogle Scholar
Mangia, F. & Epstein, C.J. (1975). Biochemical studies of growing mouse oocytes – preparation of oocytes and analysis of glucose-6-phosphate-dehydrogenase and lactate-dehydrogenase activities. Dev. Biol. 45, 211–20.CrossRefGoogle ScholarPubMed
Manjunatha, B.M., Gupta, P.S., Devaraj, M., Ravindra, J.P. & Nandi, S. (2007). Selection of developmentally competent buffalo oocytes by brilliant cresyl blue staining before IVM. Theriogenology 68, 12991304.CrossRefGoogle ScholarPubMed
Marcondes, F.K., Bianchi, F.J. & Tanno, A.P. (2002). Determination of the estrous cycle phases of rats: some helpful considerations. Braz. J. Biol. 62, 609–14.CrossRefGoogle ScholarPubMed
Mota, G.B., Batista, R.I., Serapião, R.V., Boité, M.C., Viana, J.H., Torres, C.A. & de Almeida Camargo, L.S. (2010). Developmental competence and expression of the MATER and ZAR1 genes in immature bovine oocytes selected by brilliant cresyl blue. Zygote 18, 209–16.CrossRefGoogle ScholarPubMed
Opiela, J., Katska-Ksiazkiewicz, L., Lipiński, D., Słomski, R., Bzowska, M. & Ryńska, B. (2008). Interactions among activity of glucose-6-phosphate dehydrogenase in immature oocytes, expression of apoptosis-related genes Bcl-2 and Bax, and developmental competence following IVP in cattle. Theriogenology 69, 546–55.CrossRefGoogle ScholarPubMed
Opiela, J., Lipiński, D., Słomski, R. & Katska-Ksiazkiewicz, L. (2010). Transcript expression of mitochondria related genes is correlated with bovine oocyte selection by BCB test. Anim. Reprod. Sci. 118, 188–93.CrossRefGoogle Scholar
Quinn, P., Barros, C. & Whittingham, D.G. (1982). Preservation of hamster oocytes to assay the fertilizing capacity of human spermatozoa. J. Reprod. Fertil. 66, 161–8.CrossRefGoogle ScholarPubMed
Rodrigues, B.A., Rodriguez, P., Silva, A.E., Cavalcante, L.F., Feltrin, C. & Rodrigues, J.L. (2009). Preliminary study in immature canine oocytes stained with brilliant cresyl blue and obtained from bitches with low and high progesterone serum profiles. Reprod. Domest. Anim. 44, 255–8.CrossRefGoogle ScholarPubMed
Rodriguez-González, E., Lóopez-Béjar, M., Velilla, E. & Paramio, M.T. (2002). Selection of prepubertal goat oocytes using the brilliant cresyl blue test. Theriogenology 57, 13971409.CrossRefGoogle ScholarPubMed
Torner, H., Ghanem, N., Ambros, C., Holker, M., Tomek, W., Phatsara, C., Alm, H., Sirard, M.A., Kanitz, W., Schellander, K. & Tesfaye, D. (2008). Molecular and subcellular characterisation of oocytes screened for their developmental competence based on glucose-6-phosphate dehydrogenase activity. Reproduction 135, 197212.CrossRefGoogle ScholarPubMed
Tsutsumi, O., Satoh, K., Taketani, Y. & Kato, T. (1992). Determination of enzyme activities of energy metabolism in the maturing rat oocyte. Mol. Reprod. Dev. 33, 333–7.CrossRefGoogle ScholarPubMed
Whittingham, D.G. (1971). Culture of mouse ova. J. Reprod. Fertil. Suppl. 14, 721.Google ScholarPubMed
Wongsrikeao, P., Otoi, T., Yamasaki, H., Agung, B., Taniguchi, M., Naoi, H., Shimu, R. & Nagai, T. (2006). Effects of single and double exposure to brilliant cresyl blue on the selection of porcine oocytes for in vitro production of embryos. Theriogenology 66, 366–72.CrossRefGoogle ScholarPubMed
Wu, Y.G., Liu, Y., Zhou, P., Lan, G.C., Han, D., Miao, D.Q. & Tan, J.H. (2007). Selection of oocytes for in vitro maturation by brilliant cresyl blue staining: a study using the mouse model. Cell Res. 17, 722–31.CrossRefGoogle ScholarPubMed