Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-19T02:02:03.724Z Has data issue: false hasContentIssue false

Second messenger signalling during hormone-induced Xenopus oocyte maturation

Published online by Cambridge University Press:  26 September 2008

R. John Cork*
Affiliation:
Department of Biological Sciences, purdue University, Indiana, USA
Kenneth R. Robinson
Affiliation:
Department of Biological Sciences, purdue University, Indiana, USA
*
Dr John Cork, Department of Anatomy, LSU Medical Center, 1901 perdido street, New Orleans, LA 70112-1393, USA.

Summary

Although much information about such processes as cell cycle control, second messenger systems, protein kinases and steroid hormone action has been collected from studies of Xenopus oocyte maturation, we still have very little idea about how the steroid hormone, progesterone, signals the resumption of meiosis from the oocyte plasma membrane. In this review we re-examine the data on second messenger systems in Xenopus oocytes and discuss some of the unresolved questions about hormone signal transduction during maturation. We outline some reasons for the contradictions in the literature and offer some suggestions for avenues of future research.

Type
Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, S.R.. Harootunian, A.T., Buechier, Y.I., Taylor, S.S. and Tsien, R.Y.. (1990). Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349, 694–7.CrossRefGoogle Scholar
Baulieu, E.E., Godeau, F., Schorderet, M.SchorderetSlatkine, S.. (1978). Steroid-induced meiotic division in Xenopus laevis oocytes, surface and calcium. Nature 275, 593–8.CrossRefGoogle ScholarPubMed
Baulieu, E.-E., Schorderet-Slatkine, S., Le Goascogne, C.. & Blondeau, J.-P.. (1985). A membrane receptor mechanism for steroid hormones reinitiating meiosis in Xeno pus laevis oocytes. Dev. Growth Differ. 27,223–31.CrossRefGoogle Scholar
Bement, W.M. & Capco, D.C.. (1989 a). Intracellular signals trigger ultrastructural events characteristic of meiotic maturation in oocytes of Xeno pus laevis Cell Tissue Res. 255,183–91.Google ScholarPubMed
Bement, W.M., & Capco, D.C.. (1989 b). Activators of protein kinase C trigger cortical granule exocytosis, cortical contraction, and cleavage furrow formation in Xeno pus laevis oocytes and eggs. J. Cell Biol. 108, 885–92.CrossRefGoogle Scholar
Bement, W.M. & Capco, D.G.. (1990). Transformation of the amphibian oocyte into the egg: structural and biochemical events. J. Electron Microsc. Tech. 16, 202–34.CrossRefGoogle ScholarPubMed
Birchmeier, C., Broek, D.. & Wigler, M.. (1985). Ras proteins can induce meiosis in Xenopus oocytes. Cell 43, 615–21.CrossRefGoogle ScholarPubMed
Blackmore, P.F., Neulen, J., Lattanzio, F.. & Beebe, S.J.. (1991). Cell surface-binding sites for progesterone mediate calcium uptake in human sperm. J. Biol. Chem. 266, 18655–9.CrossRefGoogle ScholarPubMed
Blumenthal, E.M.. & Kaczmarek, L.K.. (1992). Modulation cAMP of a slowly activating potassium channel expressed in Xenopus oocytes. J. Neurosci. 12, 290–6.CrossRefGoogle ScholarPubMed
Boyer, J., Asselin, J., Bellé, R.. & Ozon, R. (1986). Progesterone and cAMP-dependent protein kinase regulate in vivo level of phosphorylatiori of two proteins (Mr 20 000 and Mr 32000) in Xenopus oocytes Dcv. Biol. 113, 420–8.Google Scholar
Charbonneau, M., Bonnec, G. & Boujard, D.. (1990). Patterns of protein synthesis during Xenopus oocyte maturation differ according to the type of stimulation. Cell Diff Dev. 31, 197206.CrossRefGoogle Scholar
Cicirelli, M.F.. & Smith, L.D.. (1985). Cyclic AMP levels during the maturation of Xenopns oocytes. Dcv. Biol. 108, 254–8.Google ScholarPubMed
Cook, S.J.. & McCormick, F.. (1993). Inhibition of cAMP Ras-dependent activation of Raf. Science 262, 1069–72.CrossRefGoogle ScholarPubMed
Cork, R.J., Cicirelli, M.F.. & Robinson, K.R.. (1987). A rise cytosolic calcium is not necessary for maturation Xenopus laevis oocytes. Dev. Biol. 121, 41–7.CrossRefGoogle Scholar
Cork, R.J., Taylor, M., Varriold, R.L., Smith, L.D. & Obinson, K.R.. (1990) Microinjected GTP–y–S inhibits progesterone induced maturation of Xeno pus oocytes. Dcv. Biol. 141 447–50.Google Scholar
deHerreros, A.G., Dorniriguez, I., DiazMeco, M.T., Graziana, G., Cornet, M.E., Guddal, P.H., Johansen, T. & Moscat, J.. (1991). Requirement of phosopholipase catalyzed hydrolysis of phosphatidylcholine for maturation of Xenopus laevis cocytes in response to insulin and ras p21. J. Biol. Chem. 266, 6825–9.Google Scholar
DePauw, H., DeWolf, M., VanDessel, G., Lagrou, A., Hilderson, H.J. & Dierick, W.. (1990). Modification of the adenyLate cyclase activity of bovine thyroid plasma membranes by manipulating the ganglioside composition with a nonspecific lipid transfer protein. Biochim. Biophys. Acta 1024, 41–8.CrossRefGoogle ScholarPubMed
Dersch, M.A., Bement, W.M., Larabell, C.A., Mecca, M.D. & Capco, D.G.. (1991). Cortical membrane–trafficking during meiotic resumption of Xeno pus laevis oocytes. Cell Tissue Res. 263, 375–83.CrossRefGoogle Scholar
Deshpande, A.K. & Kung, H.F.. (1987). Insulin induction of Xeno pus laevis oocyte maturation is inhibited by monoclonal antibody against p21 ras proteins. Mol. Cell. Blot. 7, 1285–8.Google Scholar
Dettlaff, T.A., Nikitina, L.A. & Stroeva, O.G.. (1964). The role of the germinal vesicle in oocyte maturation in anurans as revealed by the removal and transplantation of nuclei. J. Embyol. Exp. Morphol. 12, 851–73.Google Scholar
Dominguez, I., Sanz, L., ArenzanaSeisdedos, F., DiazMeco, M.T.. et al. (1993). Inhibition of protein kinase C ζ subspecies blocks the activation of an NF–K B–like activity in Xenopus laevis oocytes. Mol. Cell. Blot. 13, 1290–5.Google Scholar
Egan, S.E. & Weinberg, R.A.. (1993). The pathway to signal achievement. Nature 365, 781–3.CrossRefGoogle ScholarPubMed
ElEtr, M., SchorderetSlatkine, S. & Baulieu, E.E.. (1979). Meiotic maturation in Xenopus laevis oocytes initiated by insulin. Science 205, 1397–9.CrossRefGoogle ScholarPubMed
EIEtr, M., SchorderetSlatkine, S. & Baulieu, E.E.. (1980). The role of zinc and follicle cells in insulin–initiated meiotic maturation of Xenopus Iaevis oocytes [response]. Science 210, 929–30.CrossRefGoogle Scholar
Ferrell, J.E., Wu, M., Gerhart, J.C. & Martin, G.S.. (1991). Cell cycle tyrosine phosphorylation of p34cdc2 and a micro tubule–associated protein kinase homolog in Xenopus oocytes and eggs. Mol. Cell. Biol. 11, 1965–71.Google Scholar
Finidori, J., Hanoune, J. & Baulieu, E.E.. (1982). Adenylate cyclase in Xenopus laevis oocytes, characterization of the rogesterone–sensitive membrane bound form. Mol. Cell. Endocrinol. 28, 211–27.CrossRefGoogle ScholarPubMed
Fortune, J.E., Concannon, P.W. & Hansel, W.. (1975). Ovarian progesterone levels during in vitro oocyte maturation and ovulation in Xeno pus taevis. Blot. Reprod. 13, 561–7.CrossRefGoogle Scholar
Gelerstein, S., Shapira, H., Dascal, N., Yekeul, R. & Oron, Y.. (1988). Is a decrease in cyclic AMP a necessary and sufficient signal for maturation of amphibian oocytes? Dev. Biol. 127, 2532.CrossRefGoogle ScholarPubMed
Gerhart, J., Wu, M. & Kirschner, M.. (1984). Cell cycle dynamics of an M–phase–specific cytoplasmic factor in Xenopus laevis oocytes and eggs. J. Cell Biot. 98, 1247–55.CrossRefGoogle ScholarPubMed
Godeau, J.F., SchorderetSlatkine, S., Hubert, P. & Baulieu, E.E.. (1978). Induction of maturation in Xenopus laevis oocytes by a steroid linked to a polymer. Proc. Natl. Acad. Sci. USA 75, 2353–7.CrossRefGoogle ScholarPubMed
Gotoh, Y., Nishida, E., Matsuda, S., Shiina, N., Kosako, H., Shiokawa, K., Akiyama, T., Ohta, K. & Sakai, H.. (1991). In vitro effects on microtubule dynamics of purified Xenopus M phase–activated MAP kinase. Nature 349, 251–4.CrossRefGoogle ScholarPubMed
Huchon, D., Ozon, R. & Demaille, J.G.. (1981a). Protein phophatase–1 is involved in Xenopus oocyte maturation. Nature 294, 358–9.CrossRefGoogle Scholar
Huchon, D., Ozon, R., Fischer, E. & Demailie, J.G.. (1981b). The pure inhibitor of cAMP–dependent kinase initiates Xeno pus laevis meiotic maturation. Mol. Cell. Endocrinol. 22, 211–22.CrossRefGoogle Scholar
Ishikawa, K., Hanaoka, Y., Kondo, Y. & Imai, K.. (1977). Primary action of steroid hormone at the surface of amphibian oocyte in the induction of germinal vesicle breakdown. Mod. Cell. Endocrinol. 9, 91100.CrossRefGoogle ScholarPubMed
Jordana, X., Allende, C.C. & Allende, J.E.. (1981). Guanine nucleotides are required for protesterone inhibition of amphibian oocyte adenylate cyclase. Biochem. Int. 3,527–32.Google Scholar
Korn, L.J., Siebel, C.W., McCormick, F. & Roth, R.A.. (1987). Ras p21 as a ptoential mediator of insulin action in Xenopus oocytes. Science 236, 840–3.CrossRefGoogle Scholar
Krupinski, J., Coussen, F., Bakalyar, H.A., Tang, W.J., Feinstein, P.G., Orth, K., Slaughter, C., Reed, R.R. & Gilman, A.G.. (1989). Adenylyl cyclase amino acid sequence: possible channel– or transporter–like structure. Science 244, 1558–64.CrossRefGoogle ScholarPubMed
Lacal, J.C., delaPeña, P., Moscat, J., GarciaBarreno, P., Anderson, P.S. & Aaronson, S.A.. (1987). Rapid stimulation of diacylglycerol production in Xenopus oocytes by rnicroinjection of H–ras p21. Science 238, 533–6.CrossRefGoogle ScholarPubMed
Laurenza, A., McHughSutkowski, E. & Seamon, K.B.. (1989). Forskolin, a specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action. TIPS 10, 442–7.Google ScholarPubMed
Mailer, J.L.. (1983). Interaction of steroids with the cyclic nucleotide system in amphibian oocytes. In Advances in Cyclic Nucleotide Research, ed. Greengard, PRobison, GA, pp. 295335. New York: Raven Press.Google Scholar
Maller, J.L. & Koontz, J.W.. (1981). A study of the induction of cell division in amphibian oocytes by insulin. Dev. Blot. 85, 309–16.Google ScholarPubMed
Mailer, J.L. & Krebs, E.G.. (1977). Progesterone–stimulated meiotic cell division in Xenopus oocytes. J. Biol. Chem. 252, 1712–18.Google Scholar
Marx, J.. (1993). Two major signal pathways linked. Science 262, 988–90.CrossRefGoogle ScholarPubMed
Masaracchia, R.A., Maller, J.L. & Walsh, D.A.. (1979). Histone 1 phosphotransferase activities during the maturation of oocytes of Xeno pus laevis. Arch Biochem. Biophys. 194, 112.CrossRefGoogle Scholar
Masui, Y. & Markert, C.L.. (1971). Cytoplasmic control of nuclear behavior during meiotic maturation of frog occytes. J. Exp. Zool. 177, 365–76.CrossRefGoogle Scholar
McEwen, B.S.. (1991). Non–genomic and genomic effects of steroids on neural activity. TIPS 12, 141–7.Google ScholarPubMed
Moreau, M., Vilain, J.P. & Guerrier, P.. (1980). Free calcium changes associated with hormone action in amphibian oocytes. Dev. Biol. 78, 201–14.CrossRefGoogle ScholarPubMed
Morrill, G.A., Ziegler, D. & Kostellow, A.B.. (1981). The role of Ca2+ and cyclic nucleotides in progesterone initiation of the meiotic divisions in amphibian oocytes. Life Sd. 29, 1821–35.CrossRefGoogle ScholarPubMed
Mulner, O., Tso, J., Huchon, D. & Ozon, R.. (1983). Calmodulin modulates the cyclic AMP level in Xenopus oocyte. Differentiation 12, 211–18.CrossRefGoogle ScholarPubMed
Mulner, O., Megret, F., Alouf, J.E. & Ozon, R.. (1985). Pertussis toxin facilitates the progesterone-induced maturation of Xeno pus oocytes. FEBS Lett. 181, 397402.CrossRefGoogle Scholar
Nebreda, A.R., Porras, A. & Santos, E.. (1993). p21ras–induced meiotic maturation of Xenopus oocytes in the absence of protein synthesis: MPF activation is preceded by activation of MAP and S6 Kinases. Oncogene 8, 467–77.Google ScholarPubMed
Nimmo, G.A. & Cohen, P.. (1978). The regulation of glycogen metabolism. Phosphorylation of inhibitor–i from rabbit skeletal muscle and its interaction with protein phosphatases–II and – ii. Eur. J. Biochem. 87, 353–65.CrossRefGoogle Scholar
OConnor, C.M. & Smith, L.D.. (1976). Inhibition of oocyte maturation by theophylline: possible mechanism of action. Dev. Biol. 52, 318–22.CrossRefGoogle ScholarPubMed
OConnor, C.M., Robinson, K.R. & Smith, L.D.. (1977).Calcium, potassium, and sodium exchange by full–grown and maturing Xenopus laevis oocytes. Dev. Biol. 61, 2840.CrossRefGoogle ScholarPubMed
Olate, J., Allende, C.C., Allende, J.E., Sekura, R.D. & Birnaumer, L.. (1984). Oocyte adenylyl cyclase contains Ni, yet the guanine nucleotide–dependent inhibition by progesterone is not sensitive to pertussis toxin. FEBS Lett. 175, 2530.Google Scholar
Pan, B.T. & Cooper, G.M.. (1990). Role of phosphatidylinositide metabolism in ras–induced Xeno pus oocyte maturation. Mol. Cell. Biol. 10, 923–9.Google Scholar
Papkoff, H., Farmer, S.W. & Licht, P.. (1976). Isolation and characterization of luteinizing hormone from amphibian (Rana catesbeiana) pituitaries. Life Sci. 18, 245–50.CrossRefGoogle ScholarPubMed
Robinson, K.R.. (1985). Maturation of Xeno pus oocytes is not accompanied by electrode–detectable calcium changes. Dev. Biol. 109, 504–8.CrossRefGoogle Scholar
Sadler, S.E.. (1991). Type II phophosdiesterase plays a necessary role in the growth-promoting actions of insulin-like growth factor I and Ha p21ras in Xenopus oocytes. Mol. Endocrinol. 5, 1939–46.CrossRefGoogle Scholar
Sadler, S.E. & Mailer, J.L.. (1981). Progesterone inhibits adenylate cyclase in Xeno pus oocytes: action on the guanine nucleotide regulatory protein. I. Biol. Chem. 256, 6368–77.CrossRefGoogle Scholar
Sadler, S.E. & Mailer, J.L.. (1982). Identification of a steroid receptor on the surface of Xeno pus oocytes by photoaffinity labelling. J. Biol. Chem. 257, 355–61.CrossRefGoogle Scholar
Sadler, S.E. & Maller, J.L.. (1983). Inhibition of Xenopus oocyte adenylate cyciase by progesterone and 2′,5′–dideoxyade –nosine is associated with slowing of guanine nucleotide exchange. J. Biol. Chem. 258, 7935–41.CrossRefGoogle Scholar
Sadler, S.E. & Mailer, J.L.. (1987). In vivo regulation of cyclic AMP phophodiesterase in Xenopus oocytes: stimulation by insulin and insulin–like growth factor 1. J. Biol. Chem. 262, 10644–50.CrossRefGoogle Scholar
Sadler, S.E. & Mailer, J.L.. (1984). Progesterone inhibition of Xenopus oocyte adenylate cyclase is not mediated via the Bordetella pertussis toxin substrate. Mol. Pharmacol. 26, 526–31.Google Scholar
Sadler, S.E. & Mailer, J.L.. (1989). A similar pool of cyclic AMP phosphodiesterase in Xeno pus oocytes is stimulated by insulin, insulin–like growth factor 1, and [val12, Thr59]Ha– ras protein. J. Biol. Chem. 264, 856–61.CrossRefGoogle Scholar
Sadler, S.E. & Bower, M.A. & Maller, J.L. (1985). Studies of a plasma membrane steroid receptor in Xeno pus oocytes using the synthetic progestin RU486. J. Steroid Biochem. 22, 419–22.CrossRefGoogle Scholar
Sadler, S.E., Schechter, A.L., Tabin, C.J. & Mailer, J.L.. (1986). Antibodies to the ras gene product inhibit adenylate cyclase and accelerate progesterone–induced cell division in Xenopus laevis oocytes. Mol. Cell. Biol. 6, 719–22.Google Scholar
Sadler, S.E., Mailer, J.I. & Bibbs, J.B.. (1990). Transforming ras proteins accelerate hormone–induced maturation and stimulate cyclic AMP phosphodiesterase in Xeno pus oocytes. Mol. Cell. Biol. 10, 1689–96.Google Scholar
Sagata, N., Oskarsson, M., Copeland, T., Brumbaugh, J. & VandeWoude, G.F.. (1988). Function of the c–mos protoonogene product in meiotic maturation in Xenopus oocytes. Nature 335, 519–25.CrossRefGoogle ScholarPubMed
Sagata, N., Daar, I. & Oskarsson, M., Showalter, S.D. & VandeWoude, G.F.. (1989). The product of the rnos proto oncogene as a candidate [initiator] for oocyte maturation. Science 245, 643–5.CrossRefGoogle Scholar
Scavo, L., Shuidiner, A.R., Serrano, J., Dashner, R., Roth, J. & DePablo, F.. (1991). Genes encoding receptors for insulin and insulin–like growth factor I are expressed in Xeno pus oocytes and embryos. Proc. Natl. Acad. Sci. USA 88, 6214–18.CrossRefGoogle Scholar
SchorderetSlatkine, S. & Baulieu, E.E.. (1982). Forskolin increases cAMP and inhibits progesterone induced meiosis reinitiation in Xeno pus laevis oocytes. Endocrinology 111, 1385–7.CrossRefGoogle Scholar
SchorderetSlatkine, S. & Dury, K.C.. (1973). Progesterone induced maturation of oocytes of Xenopus laevis: appearance of a (maturation promoting factor) in enucleated oocytes. Cell Differ. 2, 247–54.CrossRefGoogle ScholarPubMed
SchorderetSlatkine, S., Schorderet, M. & Baulieu, E.E.. (1982). Cyclic AMP–mediated control of meiosis: effects of progesterone, cholera toxin, and membrane–active drugs in Xenopus laevis oocytes. Proc. Nati. Acad. Sci. USA 79, 850–4.CrossRefGoogle ScholarPubMed
Schuetz, A.W. & Glad, R.. (1985). In–vitro production of meiosis inducing substance (MIS) by isolated amphibian (Rana pipiens) follicle cells. Dev. Growth Differ. 27, 201–11.CrossRefGoogle ScholarPubMed
Schumacher, M.. (1990). Rapid membrane effects of steroid hormones, an emerging concept in neuroendocrinology. TINS 13, 359–62.Google ScholarPubMed
Schwarz, S. & Pohl, P. & Zhou, G.Z.. (1989). Steroid binding at σ-′ opioid′ receptors. Science 246, 1635–7.CrossRefGoogle ScholarPubMed
Shuttleworth, J. & Godfrey, R. & Coiman, A.. (1990). p4OMO15, a cdc2–related protein kinase involved in negative regulation of meiotic maturation of Xenopus oocytes. EMBO J. 9, 3233–40.CrossRefGoogle ScholarPubMed
Smith, L.D.. (1989). The induction of oocyte maturation, transmembrane signaling events and regulation of the cell cycle. Development 107, 685–99.CrossRefGoogle ScholarPubMed
Smith, L.D. & Ecker, R.E.. (1971). The interaction of steroids with Rana pipiens oocytes in the induction of maturation. Dev. Biol. 25, 233–47.CrossRefGoogle ScholarPubMed
Snyder, B.W. & Schuetz, A.W.. (1973). In vitro evidence of steroidogenesis in the amphibian (Rana pipiens) ovarian follicle and its relationship to meiotic maturation and ovulation. J. Exp. Zool. 183,333–42.CrossRefGoogle ScholarPubMed
Stith, B.J. & Mailer, J.L.. (1984). The effect of insulin in intracellular pH and ribosomal protein S6 phosphorylation in oocytes of Xenopus laevis. Dev. Biol. 102, 7989.CrossRefGoogle ScholarPubMed
Stith, B.J. & Maller, J.L.. (1987). Induction of meiotic maturation in Xenopus oocytes by 12–o–tetradecanoylphorbol 13 acetate. Exp. Cell. Res. 169, 514–23.CrossRefGoogle Scholar
Stith, B.J., Kirkwood, A.J. & Wohnlich, E.. (1991). Insulin–like growth factor 1, insulin, and progesterone induce early and late increases in Xenopus oocyte sn–1,2–diacylglycerol levels before meiotic cell division. I. Cell. Physiol. 149, 252–9.CrossRefGoogle ScholarPubMed
Stith, B.J., Jaynes, C., Goalstone, M. & Silva, S.. (1992). Insulin and progesterone increase 32P04 labeling of phospholipids and inositol 1,4,5–trisphosphate mass in Xenopus oocytes. Cell Calcium 13, 341–52.CrossRefGoogle ScholarPubMed
Su, T.P.. (1991). a–receptors: putative links between nervous, endocrine and immune systems. Eur. J. Biochem. 200, 633–42.CrossRefGoogle Scholar
Su, T.P., London, E.D. & Jaffe, J.H.. (1988). Steroid binding at o receptors suggests a link between endocrine, nervous, and immune systems. Science 240, 219–21.CrossRefGoogle Scholar
Su, T.P., London, E.D. & Jaffe, J.H.. (1989). Steroid binding at σ-′ opioid′ receptors [response]. Science 246, 1637–8.CrossRefGoogle Scholar
Touchette, N.. (1990). Man bites dogma: a new role for steroid hormones. J. NIH Res. 2, 71–4.Google Scholar
Tso, J., Thiebier, C., Mulner, O. & Ozon, R.. (1982). Micro– injected progesterone reinitiates meiotic maturation of Xenopus laevis oocytes. Proc. Nati. Acad. Sd. USA 79,5552–6.CrossRefGoogle Scholar
Turner, P.R. & Jaffe, L.A.. (1989). G–proteins and the regulation of oocyte maturation and fertilization In The Cell Biology of Fertilization, ed Schatten, H & Schatten, C, pp. 297318. San Diego, CA: Academic Press.Google Scholar
Varnold, R.L. & Smith, L.D.. (1990). Protein kinase C and progesterone–induced maturation in Xeno pus oocytes. Development 109, 597604.CrossRefGoogle Scholar
Vasilets, L.A., Schmalzing, C., Mädefessel, K., Haase, W. & Schwarz, W.. (1990). Activation of protein kinase C by phorbol ester induces downregulation of the Na+/K+ATPase in oocytes of Xenopus laevis. J. Membr. Biol. 118, 131–42.CrossRefGoogle ScholarPubMed
Wall, D.A. & Patel, S.. (1989). Isolation of plasma membrane complexes from Xenopus oocytes. J. Membr. Biol. 107, 189201.CrossRefGoogle ScholarPubMed
Wallace, R.A. & Misuloviii, Z.. (1980). The role of zinc and follicle cells in insulin–initiated meiotic maturation of Xenopus laevis oocytes. Science 210, 928–9.CrossRefGoogle ScholarPubMed
Wasserman, W.J.. (1992). The rapid transient decrease of sn–1,2–diacylglycerol in progesterone stimulated Xenopus laevis oocytes is the result of an ethanol artifact. Dev. Biol. 154, 223–5.CrossRefGoogle ScholarPubMed
Wasserman, W.J. & Smith, L.D.. (1978). Oocyte maturation in nonmammalian vertebrates. In The Vertebrate Ovary, ed. Jones, RE, pp. 443–68. New York: Plenum Press.Google Scholar
Wasserman, W.J., Pinto, L.H., OConnor, C.M. & Smith, L.D.. (1980). Progesterone induces a rapid increase in [Ca2+]i of Xenopus laevis oocytes. Proc. Natl. Acad. Sd. USA 77, 1534–6.CrossRefGoogle ScholarPubMed
Wasserman, W.J., Freedman, A.B. & LaBella, J.J.. (1990). sn–1,2–diacylglycerol levels increase in progesterone stimulated Xenopus laevis oocytes. J. Exp. Zool. 255, 6371.CrossRefGoogle ScholarPubMed
Wolfe, S.A. Jr, Cuip, S.C. & DeSouza, E.G.. (1989). o–receptors in endocrine organs: identification, characterization and autoradiographic localization in rat pituitary, adrenal, testis and ovary. Endocrinology 124, 1160–72.CrossRefGoogle Scholar
Yew, N., Mellini, M.L. & VandeWoude, G.F.. (1992). Meiotic initiaation by the mos protein in Xenopus. Nature 355, 649–52.CrossRefGoogle Scholar