Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T18:30:41.410Z Has data issue: false hasContentIssue false

Retinol improves in vitro oocyte nuclear maturation under heat stress in heifers

Published online by Cambridge University Press:  11 July 2012

M.J. Maya-Soriano*
Affiliation:
Department of Animal Health and Anatomy, Faculty of Veterinary, Universitat Autònoma de Barcelona, Edifici V, Campus UAB, 08193 Barcelona, Spain.
E. Taberner
Affiliation:
Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Barcelona, Spain.
M. López-Béjar*
Affiliation:
Department of Animal Health and Anatomy, Faculty of Veterinary, Universitat Autònoma de Barcelona, Edifici V, Campus UAB, 08193 Barcelona, Spain.
*
All corresponding to: M.J. Maya-Soriano or M. López-Béjar. Department of Animal Health and Anatomy, Faculty of Veterinary, Universitat Autònoma de Barcelona, Edifici V, Campus UAB, 08193 Barcelona, Spain. Tel: +34 93 5814615. Fax: +34 93 5812006. e-mail: [email protected] or [email protected]
All corresponding to: M.J. Maya-Soriano or M. López-Béjar. Department of Animal Health and Anatomy, Faculty of Veterinary, Universitat Autònoma de Barcelona, Edifici V, Campus UAB, 08193 Barcelona, Spain. Tel: +34 93 5814615. Fax: +34 93 5812006. e-mail: [email protected] or [email protected]

Summary

Heat stress (HS) is especially harmful for bovine ovarian follicle development and oocyte competence. Furthermore, HS causes premature aging in oocytes due to high levels of reactive oxygen species (ROS), involved in the harmful effects over the oocyte maturation and the steroidogenic activity of follicular cells. In this study, the presumptive protective effects of antioxidant agents on heat-stressed oocytes were evaluated. Heifer oocytes were matured for 22 h under control (38°C) and HS conditions (41.5°C at 18–21 h of maturation). For each oocyte, nuclear stage and cortical granule (CG) distribution were evaluated. Steroidogenic activity of cumulus cells was also recorded. The antioxidant agents used in the study were: retinol (1.43 μg/ml), retinyl (0.28 μg/ml) and oleic acid (0.05 mg/ml). Based on a chi-squared test (P < 0.05), HS affected negatively the metaphase II (MII) progression and produced a premature CG exocytosis. Retinol improved the oocyte MII progression. However, retinyl and oleic acid, at the concentrations used in this study, could not counteract adverse effects of HS. A decrease in progesterone and increase in estradiol availability were observed when retinyl and oleic acid were supplemented to the maturation medium, respectively. In conclusion, retinol proved to be valuable in heat-stressed oocytes protecting nuclear maturation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreu-Vázquez, C., López-Gatius, F., García-Ispierto, I., Maya-Soriano, M.J., Hunter, R.H.F. & López-Béjar, M. (2010). Does heat stress provoke the loss of a continuous layer of cortical granules beneath the plasma membrane during oocyte maturation? Zygote 18, 293–99.CrossRefGoogle ScholarPubMed
Arechiga, C.F., Vazquez-Flores, S., Ortiz, O., Hernandez-Ceron, J., Porras, A., McDowell, L.R., et al. (1998). Effect of injection of beta-carotene or vitamin E and selenium on fertility of lactating dairy cows. Theriogenology 50, 6576.CrossRefGoogle ScholarPubMed
Bilby, T.R., Block, J., do Amaral, B.C., Sa Filho, O., Silvestre, F.T., Hansen, P.J., et al. (2006). Effects of dietary unsaturated fatty acids on oocyte quality and follicular development in lactating dairy cows in summer. J. Dairy Sci. 89, 3891–903.CrossRefGoogle ScholarPubMed
Chiamenti, A., Aguiar Filho, C.R., Freitas Neto, L.M., Chaves, R.M., Paula-Lopes, F.F., Lima, P.F., et al. (2010). Effects of retinoids on the in vitro development of Capra hircus embryos to blastocysts in two different culture systems. Reprod. Domest. Anim. 45, e6872.Google ScholarPubMed
Collier, R.I., Beede, D.K., Thatcher, W.W., Israel, L.A. & Wilcox, C.J. (1992). Influences of environment and its modification on dairy animal health and production. J. Dairy Sci. 65, 2213.CrossRefGoogle Scholar
Damiani, P., Fissore, R.A., Cibelli, J.B., Long, C.R., Balise, J.J., Robl, J.M. & Duby, R.T. (1996). Evaluation of developmental competence, nuclear and ooplasmic maturation of calf oocytes. Mol. Reprod. Dev. 45, 521–34.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
De Rensis, F. & Scaramuzzi, R.J. (2003). Heat stress and seasonal effects on reproduction in the dairy cow – a review. Theriogenology 60, 1139–51.CrossRefGoogle ScholarPubMed
De S Torres-Junior, J.R., de F A Pires, M., de As, W.F., de M Ferreira, A., Viana, J.H., Camargo, L.S., et al. (2008). Effect of maternal heat stress on follicular growth and oocyte competence in Bos indicus cattle. Theriogenology 69, 155–66.CrossRefGoogle ScholarPubMed
Duque, P., Diez, C., Royo, L., Lorenzo, P.L., Carneiro, G., Hidalgo, C.O., et al. (2002). Enhancement of developmental capacity of meiotically inhibited bovine oocytes by retinoic acid. Hum. Reprod. 17, 2706–14.CrossRefGoogle ScholarPubMed
Ealy, A.D., Drost, M. & Hansen, P.J. (1993). Developmental changes in embryonic resistance to adverse effects of maternal heat stress in cows. J. Dairy Sci. 76, 2899–905.CrossRefGoogle ScholarPubMed
Edwards, J.L., Saxton, A.M., Lawrence, J.L., Payton, R.R. & Dunlap, J.R. (2005). Exposure to a physiologically relevant elevated temperature hastens in vitro maturation in bovine oocytes. J. Dairy Sci. 88, 4326–33.CrossRefGoogle ScholarPubMed
Fouladi-Nashta, A.A., Gutierrez, C.G., Gong, J.G., Garnsworthy, P.C. & Webb, R. (2007). Impact of dietary fatty acids on oocyte quality and development in lactating dairy cows. Biol. Reprod. 77, 917.CrossRefGoogle ScholarPubMed
García-Ispierto, I., Lopez-Gatius, F., Bech-Sabat, G., Santolaria, P., Yaniz, J.L., Nogareda, C., De Rensis, F. & Lopez-Bejar, M. (2007). Climate factors affecting conception rate of high-producing dairy cows in northeastern Spain. Theriogenology 67, 1379–85.CrossRefGoogle ScholarPubMed
Gomez, E., Royo, L.J., Duque, P., Carneiro, G., Hidalgo, C., Goyache, F., et al. (2003). 9-cis-Retinoic acid during in vitro maturation improves development of the bovine oocyte and increases midkine but not IGF-I expression in cumulus–granulosa cells. Mol. Reprod. Dev. 66, 247–55.CrossRefGoogle Scholar
Gomez, E., Rodriguez, A., Goyache, F., Diez, C., Jose Royo, L., Moreira, P.N., et al. (2004). Retinoid-dependent mRNA expression and poly-(A) contents in bovine oocytes meiotically arrested and/or matured in vitro. Mol. Reprod. Dev. 69, 101–8.CrossRefGoogle ScholarPubMed
Gomez, E., Caamano, J.N., Rodriguez, A., De Frutos, C., Facal, N., Diez, C. (2006). Bovine early embryonic development and vitamin A. Reprod. Domest. Anim. 41 (Suppl. 2), 6371.CrossRefGoogle ScholarPubMed
Guerin, P., El Mouatassim, S. & Menezo, Y. (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update 7, 175–89.CrossRefGoogle ScholarPubMed
Hajializadeh, N., Babaei, H., Nematollahi-Mahani, S.N. & Azizollahi, S. (2008). The development of mouse early embryos in vitro in fibroblasts and cumulus cells co-cultures supplemented with retinoic acid. Iranian J. Vet. Res. 9(No. 1, Ser. No. 22).Google Scholar
Hansen, P.J., Drost, M., Rivera, R.M., Paula-Lopes, F.F., Al-Katanani, Y.M., Krininger, C.E., et al. (2001). Adverse impact of heat stress on embryo production: causes and strategies for mitigation. Theriogenology 55, 91103.CrossRefGoogle ScholarPubMed
Hidalgo, C.O., Diez, C., Duque, P., Facal, N. & Gomez, E. (2003). Pregnancies and improved early embryonic development with bovine oocytes matured in vitro with 9-cis-retinoic acid. Reproduction 125, 409–16.CrossRefGoogle ScholarPubMed
Hidalgo, C., Diez, C., Duque, P., Prendes, J.M., Rodriguez, A., Goyache, F., et al. (2005). Oocytes recovered from cows treated with retinol become unviable as blastocysts produced in vitro. Reproduction 129, 411–21.CrossRefGoogle ScholarPubMed
Hosoe, M. & Shioya, Y. (1997). Distribution of cortical granules in bovine oocytes classified by cumulus complex. Zygote 5, 371–6.CrossRefGoogle ScholarPubMed
Ikeda, M., Kodama, H., Fukuda, J., Shimizu, Y., Murata, M., Kumagai, J. & Tanaka, T. (1999). Role of radical oxygen species in rat testicular germ cell apoptosis induced by heat stress. Biol. Reprod. 61, 393–9.CrossRefGoogle ScholarPubMed
Ikeda, S., Kitagawa, M., Imai, H. & Yamada, M. (2005). The roles of vitamin A for cytoplasmic maturation of bovine oocytes. J. Reprod. Dev. 51, 2335.CrossRefGoogle ScholarPubMed
Jorritsma, R., Cesar, M.L., Hermans, J.T., Kruitwagen, C.L., Vos, P.L. & Kruip, T.A. (2004). Effects of non-esterified fatty acids on bovine granulosa cells and developmental potential of oocytes in vitro. Anim. Reprod. Sci. 81 (3–4), 225–35.CrossRefGoogle ScholarPubMed
Ju, J.C. & Tseng, J.K. (2004). Nuclear and cytoskeletal alterations of in vitro matured porcine oocytes under hyperthermia. Mol. Reprod. Dev. 68, 125–33.CrossRefGoogle ScholarPubMed
Lawrence, J.L., Payton, R.R., Godkin, J.D., Saxton, A.M., Schrick, F.N. & Edwards, J.L. (2004). Retinol improves development of bovine oocytes compromised by heat stress during maturation. J. Dairy Sci. 87, 2449–54.CrossRefGoogle ScholarPubMed
Leroy, J.L., Vanholder, T., Mateusen, B., Christophe, A., Opsomer, G., de Kruif, A., et al. (2005). Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction 130, 485–95.CrossRefGoogle ScholarPubMed
Lima, P.F., Oliveira, M.A., Goncalves, P.B., Montagner, M.M., Reichenbach, H.D., Weppert, M., et al. (2004). Effects of retinol on the in vitro development of Bos indicus embryos to blastocysts in two different culture systems. Reprod. Domest. Anim. 39, 356–60.CrossRefGoogle ScholarPubMed
Livingston, T., Eberhardt, D., Edwards, J.L. & Godkin, J. (2004). Retinol improves bovine embryonic development in vitro. Reprod. Biol. Endocrinol. 2, 83.CrossRefGoogle ScholarPubMed
Lopez-Gatius, F. (2003). Is fertility declining in dairy cattle? A retrospective study in northeastern Spain. Theriogenology 60, 8999.CrossRefGoogle ScholarPubMed
Lopez-Gatius, F., Garcia-Ispierto, I., Santolaria, P., Yaniz, J., Nogareda, C. & Lopez-Bejar, M. (2006). Screening for high fertility in high-producing dairy cows. Theriogenology 65, 1678–89.CrossRefGoogle ScholarPubMed
Miller, J.K., Brzezinska-Slebodzinska, E. & Madsen, F.C. (1993). Oxidative stress, antioxidants, and animal function. J. Dairy Sci. 76, 2812–23.CrossRefGoogle ScholarPubMed
Payton, R.R., Romar, R., Coy, P., Saxton, A.M., Lawrence, J.L. & Edwards, J.L. (2004). Susceptibility of bovine germinal vesicle-stage oocytes from antral follicles to direct effects of heat stress in vitro. Biol. Reprod. 71, 1303–8.CrossRefGoogle ScholarPubMed
Rajesh, N., Shankar, M.B. & Deecaraman, M. (2010). Effect of vitamin A supplementation at different gaseous environments on in vitro development of pre-implantation sheep embryos to the blastocyst stage. Animal 4, 11, 1884–90.CrossRefGoogle Scholar
Roth, Z. & Hansen, P.J. (2005). Disruption of nuclear maturation and rearrangement of cytoskeletal elements in bovine oocytes exposed to heat shock during maturation. Reproduction 129, 235–44.CrossRefGoogle ScholarPubMed
Roth, Z., Aroyo, A., Yavin, S. & Arav, A. (2008). The antioxidant epigallocatechin gallate (EGCG) moderates the deleterious effects of maternal hyperthermia on follicle-enclosed oocytes in mice. Theriogenology 70, 887–97.CrossRefGoogle ScholarPubMed
Tseng, J.K., Chen, C.H., Chou, P.C., Yeh, S.P. & Ju, J.C. (2004). Influences of follicular size on parthenogenetic activation and in vitro heat shock on the cytoskeleton in cattle oocytes. Reprod. Domest. Anim. 39, 146–53.CrossRefGoogle ScholarPubMed
Vahedi, V., Zeinoaldini, S., Kohram, H. & Farahavar, A. (2009). Retinoic acid effects on nuclear maturation of bovine oocytes in vitro. African J. Biotechnol. 8, 3974–8.Google Scholar
Vanholder, T., Leroy, J.L.M.R., Van Soom, A., Opsomer, G., Maes, D., Coryn, M. & de Kruif, A. (2005). Effect of non-esterified fatty acids on bovine granulosa cell steroidogenesis and proliferation in vitro. Anim. Reprod. Sci. 87, 3344.CrossRefGoogle ScholarPubMed
West, J.W. (2003). Effects of heat stress on production in dairy cattle. J. Dairy Sci. 86, 2131–44.CrossRefGoogle ScholarPubMed
Whaley, S.L., Hedgpeth, V.S., Farin, C.E., Martus, N.S., Jayes, F.C. & Britt, J.H. (2000). Influence of vitamin A injection before mating on oocyte development, follicular hormones, and ovulation in gilts fed high-energy diets. J. Anim. Sci. 78, 1598–607.CrossRefGoogle ScholarPubMed
Wolfenson, D., Thatcher, W.W., Badinga, L., Savio, J.D., Meidan, R., Lew, B.J., et al. (1995). Effect of heat stress on follicular development during the estrous cycle in lactating dairy cattle. Biol. Reprod. 52, 1106–13.CrossRefGoogle ScholarPubMed
Wolfenson, D., Roth, Z. & Meidan, R. (2000). Impaired reproduction in heat-stressed cattle: basic and applied aspects. Anim. Reprod. Sci. 60–61, 535–47.CrossRefGoogle ScholarPubMed
Zeron, Y., Ocheretny, A., Kedar, O., Borochov, A., Sklan, D. & Arav, A. (2001). Seasonal changes in bovine fertility: relation to developmental competence of oocytes, membrane properties and fatty acid composition of follicles. Reproduction 121, 447–54.CrossRefGoogle ScholarPubMed