Published online by Cambridge University Press: 10 June 2022
Ascidians (Urochordate) are hermaphroditic marine invertebrates that release sperm and eggs to the surrounding seawater. However, several ascidians, including Ciona intestinalis and Halocynthia roretzi, show strict self-sterility due to a self/nonself-recognition mechanism in the interaction between sperm and the vitelline coat (VC) of the eggs. We have previously reported that sperm intracellular Ca2+ level drastically increased immediately after sperm binding to the VC of self eggs but not nonself eggs in C. intestinalis type A, which was potently inhibited by lowering the external Ca2+ concentration, suggesting that sperm Ca2+ influx occurs after sperm self-recognition on the VC. Here, we investigated whether self-sterility was abolished by lowering the external Ca2+ concentration in C. intestinalis. The results showed that the block to self-fertilization was removed by low-Ca2+ (∼1 mM) seawater without decreasing the fertilization rate. Such an effect was not observed with Mg2+ or K+. These results led us to conclude that a low-Ca2+ environment is sufficient to block the self-recognition signal upon fertilization. As low-Ca2+ seawater showed no effect on H. roretzi self-sterility, we propose that the mechanism of self-sterility in Ciona must be distinctive from that in Halocynthia.
These authors contributed equally to this work.
Present address: Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Asamushi, Aomori 039–3501, Japan.