Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-16T11:51:18.152Z Has data issue: false hasContentIssue false

Presence and distribution of E-cadherin in the 4-cell golden hamster embryo. Effect of maternal age and parity

Published online by Cambridge University Press:  01 August 2008

A. Trejo
Affiliation:
Departamento de Biologia de la Reproduccion, Universidad Autonoma Metropolitana – Iztapalapa. Av. San Rafael Atlixco N° 186 Col. Vicentina, Iztapalapa. Mexico, D.F., C.P. 09340.
D. Ambriz*
Affiliation:
Universidad Autonoma Metropolitana - Iztapalapa, Av. San Rafael Atlixco No. 186 Col. Vicentina, Iztapalapa. Mexico, D.F., C.P. 09340. Departamento de Biologia de la Reproduccion, Universidad Autonoma Metropolitana – Iztapalapa. Av. San Rafael Atlixco N° 186 Col. Vicentina, Iztapalapa. Mexico, D.F., C.P. 09340.
M. C. Navarro-Maldonado
Affiliation:
Departamento de Biologia de la Reproduccion, Universidad Autonoma Metropolitana – Iztapalapa. Av. San Rafael Atlixco N° 186 Col. Vicentina, Iztapalapa. Mexico, D.F., C.P. 09340.
E. Mercado
Affiliation:
Departamento de Biologia de la Reproduccion, Universidad Autonoma Metropolitana – Iztapalapa. Av. San Rafael Atlixco N° 186 Col. Vicentina, Iztapalapa. Mexico, D.F., C.P. 09340.
A. Rosado
Affiliation:
Departamento de Biologia de la Reproduccion, Universidad Autonoma Metropolitana – Iztapalapa. Av. San Rafael Atlixco N° 186 Col. Vicentina, Iztapalapa. Mexico, D.F., C.P. 09340.
*
All correspondence to Demetrio Ambriz. Universidad Autonoma Metropolitana - Iztapalapa, Av. San Rafael Atlixco No. 186 Col. Vicentina, Iztapalapa. Mexico, D.F., C.P. 09340. Tel: +55 58044706. Fax: +55 58044930. e-mail: [email protected]

Summary

Maternal age dependency of gestation time in hamster and in other mammals is a well demonstrated fact. We have recently shown that adult nulliparous and multiparous hamster females show significant asynchrony and retard on early embryo development (from two blastomeres to morula stages) when compared with nulliparous young females. The number of cell–cell adhesions between blastomeres in early embryo development has been reported to be a good indication of the ability of embryos to cleave and develop. In this work we studied, by indirect immunofluorescence, the presence and distribution of E-cadherin in 4-cell embryos obtained from nulliparous young (NYF), nulliparous adult (NAF) and multiparous adult (MAF) hamster females. Distribution and intensity of fluorescence was observed and registered using confocal microscopy. Staining intensities for E-cadherin were quantified by computed densitometry in the free membrane regions, in the cytoplasm region and in the cell–cell adhesion zones of each embryo. E-Cadherin in all the studied zones was significantly higher (p < 0.01) in NYF. Cadherin concentration in the intercellular membranes was always statistically higher (p < 0.05) than in the free membrane regions. An appreciable concentration of E-cadherin was found in the cytoplasm of the 4-cell embryos obtained from the three groups of females, but was significantly higher in NYF. No statistical differences were observed in any of the parameters studied between NAF and MAF. Our results seem to indicate that changes in the reproductive behavior related to age and/or multiparity may be correlated with changes in the processes related to intercellular adhesions during early cleavage.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antczak, M. & Van Blerkom, J. (1999). Temporal and spatial aspects of fragmentation in early human embryos: possible effects on developmental competence and association with the differential elimination of regulatory proteins from polarized domains. Hum. Reprod. 14, 429–47.Google Scholar
Barth, A.I., Nathke, I.S. & Nelson, W.J. (1997). Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signalling pathways. Curr. Opin. Cell Biol. 9, 683–90.CrossRefGoogle Scholar
Blaha, G.C. (1964). Effect of age of the donor and recipient on the development of the transferred golden hamster ova. Anat. Rec. 150, 413–6.Google Scholar
Bloor, D.J., Metcalfe, A.D., Rutherford, A., Brison, D.R. & Kimber, S.J. (2002). Expression of cell adhesion molecules during human preimplantation embryo development. Mol. Hum. Reprod. 8, 237–45.Google Scholar
Chu, Y.S., Thomas, W.A., Eder, O., Pincet, F., Pérez, E., Thiery, J.P. & Dufour, S. (2004). Force measurements in E-cadherin mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodeling through Rac and Cdc42. J. Cell Biol. 167, 1183–94.Google Scholar
Goval, J.J., Van Cauwenberge, A. & Alexandre, A. (2000). Respective roles of protein tyrosine kinases and protein kinases C in the upregulation of β-catenin distribution and compaction in mouse preimplantation embryos: a pharmacological approach. Biol. Cell. 92, 513–6.CrossRefGoogle ScholarPubMed
Hardy, K. (1993). Development of human blastocysts in vitro. In Preimplantation Embryo Development, (ed. Bavister, B.D.), pp. 184–99. New York: Springer–Verlag.CrossRefGoogle Scholar
Kan, N.G., Stemmler, M.P., Junghans, D., Kanzler, B., de Vries, W.N., Dominis, M. & Kemler, R. (2007). Gene replacement reveals a specific role for E-cadherin in the formation of a functional trophectoderm. Development 134, 3141.Google Scholar
Kawai, Y., Yamaguchi, T., Yoden, T., Hanada, M. & Miyake, M. (2002). Effect of protein phosphatase inhibitors on the development of mouse embryos: protein phosphorylation is involved in the E-cadherin distribution in mouse two-cell embryos. Biol. Pharm. Bull. 25, 179–83.CrossRefGoogle ScholarPubMed
Kovacs, E.M., Ali, R.G., McCormack, A.J. & Yap, A.S. (2002). E-Cadherin homophylic ligation directly signals through Rac and PI3-kinase to regulate adhesive contacts. J. Biol. Chem. 277, 6708–18.CrossRefGoogle Scholar
Liu, W.F., Nelson, C.M., Pirone, D.M. & Chen, Ch.S. (2006). E-Cadherin engagement stimulates proliferation via Rac1. J. Cell Biol. 173, 431–41.Google Scholar
Minami, N., Sasaki, K., Aizawa, A., Miyamoto, M. & Imai, H. (2001). Analysis of gene expression in mouse 2-cell embryos using fluorescein differential display: comparison of culture environments. Biol. Reprod. 64, 30–5.Google Scholar
Nakagawa, M., Fukata, M., Yamaga, M., Itoh, N. & Kaibuchi, K. (2001). Recruitment and activation of Rac1 by the formation of E-cadherin-mediated cell–cell adhesion sites. J. Cell Sci. 114, 1829–38.CrossRefGoogle ScholarPubMed
Navarro-Maldonado, M.C., Ambriz, D.G., Mundo, E.R., Trejo, A.C., Hernandez, O.P. & Rosado, A. (2000). Desarrollo embrionario temprano en el hámster sirio dorado, Mesocricetus auratus (Mammalia: rodentia). Acta Zool. Mex. 81, 105–15.CrossRefGoogle Scholar
Neganova, I.E., Sekirina, G.G. & Eichenlaub-Ritter, U. (2000). Surface-expressed E-cadherin and mitochondrial and microtubule distribution in rescue of mouse embryos from 2-cell block by aggregation. Mol. Hum. Reprod. 6, 454–64.Google Scholar
Noren, N.K., Niessen, C.M., Gumbiner, B.M. & Burridge, K. (2001). Cadherin engagement regulates Rho family GTPases. J. Biol. Chem. 276, 33305–8.CrossRefGoogle ScholarPubMed
Ohsugi, M., Butz, S. & Kemler, R. (1996). β-Catenin is a major tyrosine-phosphorylated protein during mouse oocyte maturation and preimplantation development. Dev. Dyn. 206, 391402.3.0.CO;2-D>CrossRefGoogle Scholar
Ortiz, M.E., Bedregal, P., Carvajal, M.I. & Croxatto, H.B. (1986). Fertilized and unfertilized ova are transported at different rates by the hamster oviduct. Biol. Reprod. 34, 777–81.Google Scholar
Reddy, P., Liu, L., Ren, C., Lindgren, P., Boman, K., Shen, Y., Lundin, E., Ottander, U., Rytinky, M. & Liu, K. (2005). Formation of E-cadherin mediated cell–cell adhesion activates Akt and mitogen activated protein kinase (MAPK) via phosphatidylinositol 3 kinase and ligand-independent activation of epidermal growth factor (EGF) receptor in ovarian cancer cells. Mol. Endocrinol. 19, 2564–78.Google Scholar
Soderwall, A.L., Kent, H.A., Turbyfill, C.L. & Britenbaker, A. (1960). Variation in gestation length and litter size of the golden hamster Mesocricetus auratus. J. Geront. 15, 246–8.CrossRefGoogle ScholarPubMed
Stoddart, N.R., Roudebush, W.E. & Fleming, S.D. (2001). Exogenous platelet-activating factor stimulates cell proliferation in mouse preimplantation embryos prior to the fourth cell cycle and shows isoform-specific stimulatory effects. Zygote 9, 261–9.Google Scholar
Suzuki, H., Togashi, M., Adachi, J. & Toyoda, Y. (1995). Developmental ability of mouse embryos is influenced by cell association at the 4-cell stage. Biol. Reprod. 53, 7883.CrossRefGoogle Scholar
Tranguch, S., Steuerwald, N. & Huet-Hudson, Y.M. (2003). Nitric oxide synthase production and nitric oxide regulation of preimplantation embryo development. Biol. Reprod. 68, 1538–44.Google Scholar
Trejo, C.A., Navarro, M.C., Ambriz, G.D. & Rosado, A. (2005). Effect of maternal age and parity on preimplantation embryo development and transport in the golden hamster (Mesocricetus auratus). Lab. Animals 39, 290–7.CrossRefGoogle ScholarPubMed
Trejo, A., Navarro-Maldonado, C., Jimenez, F. & Rosado, A. (2006). Effect of maternal age and parity on the presence and distribution of E-cadherin in hamster embryos during preimplantation development and transport. Reprod. Fert. Devel. 18, 181.Google Scholar
Van Kooij, R.J., Looman, C.W.N., Habbema, J.D.F., Dorland, M. & te Velde, E.R. (1996). Age-dependent decrease in embryo implantation rate after in vivo fertilization. Fert. Steril. 66, 769–75.Google Scholar
Yap, A.S. & Kovacs, E.M. (2003). Direct cadherin-activated cell signaling: a view from the plasma membrane. J. Cell. Biol. 160, 1116.CrossRefGoogle ScholarPubMed